TC-permitting GCM simulations of hurricane frequency response to sea surface temperature anomalies projected for the late-Twenty-First Century

A tropical cyclone--permitting global atmospheric model is used to explore the hurricane frequency response to sea surface temperature (SST) anomalies generated by coupled models for the late-twenty-first century. Results are presented for SST anomalies averaged over 18 models as well as from 8 individual models. For each basin, there exists large intermodel spread in the magnitude and even the sign of the frequency response among the different SST projections. These sizable variations in response are explored to understand features of SST distributions that are important for the basin-wide hurricane responses. In the North Atlantic, the eastern Pacific, and the southern Indian basins, most (72%-86%) of the intermodel variance in storm frequency response can be explained by a simple relative SST index defined as a basin’s storm development region SST minus the tropical mean SST. The explained variance is significantly lower in the South Pacific (48%) and much lower in the western Pacific basin (27%). Several atmospheric parameters are utilized to probe changes in tropical atmospheric circulation and thermodynamical properties relevant to storm genesis in the model. While all present strong correlation to storm response in some basins, a parameter-measuring tropospheric convective mass flux stands out as skillful in explaining the simulated differences for all basins. Globally, in addition to a modest reduction of total storm frequency, the simulations exhibit a small, but robust eastward and poleward migration of genesis frequency in both the North Pacific and the North Atlantic Oceans. This eastward migration of storms can also be explained by changes in convection.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2012 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Zhao, Ming
Held, Isaac
Publisher UCAR/NCAR - Library
Publication Date 2012-04-15T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:10:21.744877
Metadata Record Identifier edu.ucar.opensky::articles:11909
Metadata Language eng; USA
Suggested Citation Zhao, Ming, Held, Isaac. (2012). TC-permitting GCM simulations of hurricane frequency response to sea surface temperature anomalies projected for the late-Twenty-First Century. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7bc4067. Accessed 28 June 2025.

Harvest Source