The balance between heterogeneous and homogeneous nucleation of ice clouds using CAM5/CARMA

We present a modification to the Community Aerosol and Radiation model for Atmospheres (CARMA) sectional ice microphysical model where we have added interactive nucleation of sulfates and heterogeneous nucleation onto dust in order to create a more comprehensive representation of ice nucleation within the CARMA sectional ice model. The Yu et al. (2019, ) convective wet removal fix has also been added in order to correctly transport aerosol within the Community Atmosphere Model version 5 (CAM5) and the 3-mode Modal Aerosols Model (MAM3). In CARMA, the balance of homogeneous and heterogeneous nucleation is controlled by the presence of temperatures below 240 K, supersaturation, and the availability of heterogeneous nuclei. Due to a paucity of dust at altitudes above about 7 km, where temperatures over most of the Earth fall below 240 K, cirrus clouds above 7 km nucleate primarily via homogeneous nucleation on aqueous sulfate aerosols in our simulations. Over mid-latitudes of the Northern Hemisphere, dust is more common above 7 km during spring through fall, and both heterogeneous nucleation and homogenous freezing occur in our model. Below 7 km heterogeneous nucleation dominates in situ formation of ice. Furthermore, we find an improvement of the representation of in-cloud ice within mixed phase clouds in CAM5/CARMA when compared to simulations with only homogeneous ice nucleation. Other modes of nucleation such as contact nucleation of liquid cloud droplets or liquid cloud droplet freezing on immersion nuclei, were not directly compared with classical depositional heterogeneous nucleation in this study.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Service #1 : Cheyenne: SGI ICE XA Cluster

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2022 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Maloney, C.
Toon, B.
Bardeen, Charles
Yu, P.
Froyd, K.
Kay, J.
Woods, S.
Publisher UCAR/NCAR - Library
Publication Date 2022-03-27T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T16:05:15.727892
Metadata Record Identifier edu.ucar.opensky::articles:25283
Metadata Language eng; USA
Suggested Citation Maloney, C., Toon, B., Bardeen, Charles, Yu, P., Froyd, K., Kay, J., Woods, S.. (2022). The balance between heterogeneous and homogeneous nucleation of ice clouds using CAM5/CARMA. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7sf30s6. Accessed 02 August 2025.

Harvest Source