The effect of modeling choices on updating intensity-duration-frequency curves and stormwater infrastructure designs for climate change

Intensity-duration-frequency (IDF) curves, commonly used in stormwater infrastructure design to represent characteristics of extreme rainfall, are gradually being updated to reflect expected changes in rainfall under climate change. The modeling choices used for updating lead to large uncertainties; however, it is unclear how much these uncertainties affect the design and cost of stormwater systems. This study investigates how the choice of spatial resolution of the regional climate model (RCM) ensemble and the spatial adjustment technique affect climate-corrected IDF curves and resulting stormwater infrastructure designs in 34 US cities for the period 2020 to 2099. In most cities, IDF values are significantly different between three spatial adjustment techniques and two RCM spatial resolutions. These differences have the potential to alter the size of stormwater systems designed using these choices and affect the results of climate impact modeling more broadly. The largest change in the engineering decision results when the design storm is selected from the upper bounds of the uncertainty distribution of the IDF curve, which changes the stormwater pipe design size by five increments in some cases, nearly doubling the cost. State and local agencies can help reduce some of this variability by setting guidelines, such as avoiding the use of the upper bound of the future uncertainty range as a design storm and instead accounting for uncertainty by tracking infrastructure performance over time and preparing for adaptation using a resilience plan.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Cook, L. M.
McGinnis, Seth A.
Samaras, C.
Publisher UCAR/NCAR - Library
Publication Date 2020-01-14T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T19:22:17.852498
Metadata Record Identifier edu.ucar.opensky::articles:23193
Metadata Language eng; USA
Suggested Citation Cook, L. M., McGinnis, Seth A., Samaras, C.. (2020). The effect of modeling choices on updating intensity-duration-frequency curves and stormwater infrastructure designs for climate change. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d76h4mm6. Accessed 15 August 2025.

Harvest Source