The fall speed variability of similarly sized ice particle aggregates

The terminal velocity (Vt) of ice hydrometeors is of high importance to atmospheric modeling. Vt is governed by the physical characteristics of a hydrometeor, including mass and projected area, as well as environmental conditions. When liquid hydrometeors coalesce to form larger hydrometeors, the resulting hydrometeor can readily be characterized by its spherical or near-spherical shape. For ice hydrometeors, it is more complicated because of the variability of ice shapes possible in the atmosphere as well as the inherent randomness in the aggregation process, which leads to highly variable characteristics. The abundance of atmospheric processes affecting ice particle dimensional characteristics creates potential for highly variable Vt for ice particles that are predicted or measured to be of the “same size.” In this article we explore the variability of ice hydrometeor Vt both theoretically and through the use of experimental observations. Theoretically, the variability in Vt is investigated by analyzing the microphysical characteristics of randomly aggregated hexagonal shapes. The modeled dimensional characteristics are then compared to aircraft probe measurements to constrain the variability in atmospheric ice hydrometeor Vt. Results show that the spread in Vt can be represented with Gaussian distributions relative to a mean. Variability expressed as the full width at half maximum of the normalized Gaussian probability distribution function is around 20%, with somewhat higher values associated with larger particle sizes and warmer temperatures. Field campaigns where mostly convective clouds were sampled displayed low variability, while Arctic and midlatitude winter campaigns showed broader Vt spectra.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2019 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Schmitt, Carl G.
Sulia, Kara
Lebo, Zachary J.
Heymsfield, Andrew J.
Przybyo, Vanessa
Connolly, Paul
Publisher UCAR/NCAR - Library
Publication Date 2019-08-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:08:52.232225
Metadata Record Identifier edu.ucar.opensky::articles:22677
Metadata Language eng; USA
Suggested Citation Schmitt, Carl G., Sulia, Kara, Lebo, Zachary J., Heymsfield, Andrew J., Przybyo, Vanessa, Connolly, Paul. (2019). The fall speed variability of similarly sized ice particle aggregates. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7f76gk8. Accessed 21 June 2025.

Harvest Source