The impact of precipitation type discrimination on hydrologic simulation: Rain-snow partitioning derived from HMT-west radar-detected brightband height versus surface temperature data

Hourly surface precipitation type (Ptype) grids (a total of 408 h from 1 December 2005 through April 20, 2006) were generated by mapping the elevation of the radar-detected brightband height (BBH) to terrain elevation during the 2005/06 observation period of the western Hydrometeorology Testbed (HMT-West) in the North Fork American River basin. BBH Ptype grids were compared to those derived by the standard National Weather Service (NWS) temperature threshold method. In this method, a fixed threshold temperature separating rain and snow was applied to hourly 4-km gridded temperature data. The BBH Ptype grids agreed well (>90%) with the temperature threshold-based grids below an elevation of 1524 m. The agreement dropped to below 60% above this elevation, and BBH Ptype produced more rainfall than the temperature-based Ptype. Continuous hourly streamflow simulations were generated using spatially lumped and distributed hydrologic models with and without the BBH Ptype data from 1 October 2005 through 30 September 2006. Simple insertion of BBH Ptype data did not always improve streamflow simulations for the 11 events examined relative to corresponding simulations using temperature threshold-derived precipitation type, possibly because of the use of the models calibrated with the temperature-based Ptype. The simple sensitivity test indicated simulations of both peak flows from midwinter storms and spring snowmelt runoff are affected by errors in precipitation type estimates.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2013 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Mizukami, Naoki
Koren, Victor
Smith, Michael
Kingsmill, David
Zhang, Ziya
Cosgrove, Brian
Cui, Zhengtao
Publisher UCAR/NCAR - Library
Publication Date 2013-08-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:49:57.114623
Metadata Record Identifier edu.ucar.opensky::articles:12797
Metadata Language eng; USA
Suggested Citation Mizukami, Naoki, Koren, Victor, Smith, Michael, Kingsmill, David, Zhang, Ziya, Cosgrove, Brian, Cui, Zhengtao. (2013). The impact of precipitation type discrimination on hydrologic simulation: Rain-snow partitioning derived from HMT-west radar-detected brightband height versus surface temperature data. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d77s7pm7. Accessed 19 June 2025.

Harvest Source