The Intermediate Complexity Atmospheric Research Model (ICAR)

With limited computational resources, there is a need for computationally frugal models. This is particularly the case for atmospheric sciences, which have long relied on either simplistic analytical solutions or computationally expensive numerical models. The simpler solutions are inadequate for many problems, while the cost of numerical models makes their use impossible for many problems, most notably high-resolution climate downscaling applications spanning large areas, long time periods, and many global climate projections. Here the Intermediate Complexity Atmospheric Research model (ICAR) is presented to provide a new step along the modeling complexity continuum. ICAR leverages an analytical solution for high-resolution perturbations to wind velocities, in conjunction with numerical physics schemes, that is, advection and cloud microphysics, to simulate the atmosphere. The focus of the initial development of ICAR is for predictions of precipitation, and eventually temperature, humidity, and radiation at the land surface. Comparisons between ICAR and the Weather Research and Forecasting (WRF) Model for simulations over an idealized mountain are presented, as well as among ICAR, WRF, and the Parameter-Elevation Regressions on Independent Slopes Model (PRISM) observation-based product for a year-long simulation over the Colorado Rockies. In the ideal simulations, ICAR matches WRF precipitation predictions across a range of environmental conditions with a coefficient of determination r2 of 0.92. In the Colorado Rockies, ICAR, WRF, and PRISM show very good agreement, with differences between ICAR and WRF comparable to the differences between WRF and PRISM in the cool season. For these simulations, WRF required 140–800 times more computational resources than ICAR.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2016 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Gutmann, Ethan D.
Barstad, I.
Clark, Martyn P.
Arnold, J.
Rasmussen, Roy M.
Publisher UCAR/NCAR - Library
Publication Date 2016-04-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T20:49:45.183453
Metadata Record Identifier edu.ucar.opensky::articles:18057
Metadata Language eng; USA
Suggested Citation Gutmann, Ethan D., Barstad, I., Clark, Martyn P., Arnold, J., Rasmussen, Roy M.. (2016). The Intermediate Complexity Atmospheric Research Model (ICAR). UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7b56m9q. Accessed 14 August 2025.

Harvest Source