Towards seamless large-domain parameter estimation for hydrologic models

Estimating spatially distributed parameters remains one of the biggest challenges for large-domain hydrologic modeling. Many large-domain modeling efforts rely on spatially inconsistent parameter fields, e.g., patchwork patterns resulting from individual basin calibrations, parameter fields generated through default transfer functions that relate geophysical attributes to model parameters, or spatially constant, default parameter values. This paper provides an initial assessment of a multiscale parameter regionalization (MPR) method over large geographical domains to derive seamless parameters in a spatially consistent manner. MPR applies transfer functions at the native scale of the geophysical data, and then scales these model parameters to the desired model resolution. We developed a stand-alone framework called MPR-flex for multimodel use and applied MPR-flex to the variable infiltration capacity model to produce hydrologic simulations over the contiguous United States (CONUS). We first independently calibrate 531 basins across CONUS to obtain a performance benchmark for each basin. To derive the CONUS parameter fields, we perform a joint MPR calibration using all but the poorest behaved basins to obtain a single set of transfer function parameters that are applied to the entire CONUS. Results show that CONUS-wide calibration has similar performance compared to previous simulations using a patchwork quilt of partially calibrated parameter sets, but without the spatial discontinuities in parameters that characterize some previous CONUS-domain model simulations. Several avenues to improve CONUS-wide calibration remain, including selection of calibration basins, objective function formulation, as well as MPR-flex improvements including transfer function formulations and scaling operator optimization.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Dataset #1 : A large-sample watershed-scale hydrometeorological dataset for the contiguous USA

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2017 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Mizukami, Naoki
Clark, Martyn P.
Newman, Andrew J.
Wood, Andrew W.
Gutmann, Ethan D.
Nijssen, Bart
Rakovec, Oldrich
Samaniego, Luis
Publisher UCAR/NCAR - Library
Publication Date 2017-09-23T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:09:15.378136
Metadata Record Identifier edu.ucar.opensky::articles:21113
Metadata Language eng; USA
Suggested Citation Mizukami, Naoki, Clark, Martyn P., Newman, Andrew J., Wood, Andrew W., Gutmann, Ethan D., Nijssen, Bart, Rakovec, Oldrich, Samaniego, Luis. (2017). Towards seamless large-domain parameter estimation for hydrologic models. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7bc4228. Accessed 30 June 2025.

Harvest Source