Tracking tropospheric radio occultation signals from low Earth orbit

Propagation of radio occultation signals through the tropical lower troposphere with severe refractivity gradients results in significant spreading of the signal spectrum. Under such conditions a signal acquisition technique which tracks large random troposphere-induced phase accelerations more reliably than a generic phase-locked loop has to be applied. This paper discusses the results of simulations of open loop tracking of radio occultation signals that were generated with data from high-resolution tropical radiosondes. The signal has to be down-converted in real time in the receiver on orbit to a low mean residual frequency by use of a phase (Doppler) model based on predicted orbits and refractivity climatology. The down-converted complex signal is then low-pass filtered and sampled. The phase in excess of the phase model must be reconstructed from the sampled and down-linked signal in postprocessing. This may require an additional down-conversion to eliminate (minimize) aliasing of harmonics in the spectrum. Then the accumulated phase can be reconstructed by resampling the signal at a higher rate to resolve the cycle ambiguities. A fast algorithm for prediction of the Doppler based on the refractivity climatology and an algorithm for the detection of Doppler mismodeling based on sliding window spectral analysis of the down-converted signal are developed and tested. The accuracy of the Doppler modeling, Âą(15-20) Hz, the required filter bandwidth, 100 Hz, and the sampling rate, 50-100 Hz, are estimated.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

An edited version of this paper was published by AGU. Copyright 2001 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Sokolovskiy, Sergey
Publisher UCAR/NCAR - Library
Publication Date 2001-05-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:04:38.470943
Metadata Record Identifier edu.ucar.opensky::articles:17316
Metadata Language eng; USA
Suggested Citation Sokolovskiy, Sergey. (2001). Tracking tropospheric radio occultation signals from low Earth orbit. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7c53n42. Accessed 29 June 2025.

Harvest Source