Transition of interhemispheric asymmetry of equatorial ionization anomaly during solstices

The magnitudes of the two crests of equatorial ionization anomaly (EIA) vary with local time. During the solstices, EIA crest in the winter hemisphere is larger than that in the summer hemisphere before noon/early afternoon. Whereafter, the crest in the summer hemisphere becomes intensified, and the stronger EIA crest transits to the summer hemisphere. Using Constellation Observing System for Meteorology, Ionosphere, and Climate ionospheric radio occultation data, we examine the longitudinal and altitudinal variations of this interhemispheric transition in four longitudinal sectors and at seven heights under low/high solar activity conditions. The results show that during the June solstice the transition of the stronger EIA peak from the winter to the summer hemisphere is earlier in the sectors where the geomagnetic equator is further away from the subsolar point and the geomagnetic field declination is larger, while during the December solstice the longitudinal variations generally show the opposite compared with that in the June solstice. The distance between the geomagnetic equator and subsolar point and the geomagnetic field configuration control the upward/downward plasma movements in the summer/winter hemisphere, leading to the different transition times in different longitudinal sectors. For both solstices, transition times emerge earlier as height increases, which is mainly caused by the larger effective scale height in the summer hemisphere than in the winter hemisphere, resulting in a smaller electron density difference at higher altitudes with a fast transition. Solar activity alters the transition time below 320 km, whereas it has no evident effect at higher altitudes.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2018 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Huang, He
Lu, Xian
Liu, Libo
Wang, Wenbin
Li, Qiaoling
Publisher UCAR/NCAR - Library
Publication Date 2018-12-10T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:08:45.381767
Metadata Record Identifier edu.ucar.opensky::articles:22277
Metadata Language eng; USA
Suggested Citation Huang, He, Lu, Xian, Liu, Libo, Wang, Wenbin, Li, Qiaoling. (2018). Transition of interhemispheric asymmetry of equatorial ionization anomaly during solstices. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d75t3pgn. Accessed 22 June 2025.

Harvest Source