Turbulence structure and mixing in strongly stable Couette flows over thermally heterogeneous surfaces: Effect of heterogeneity orientation

Direct numerical simulations (DNS) of plane Couette flows over thermally heterogeneous surfaces at bulk Reynolds number $$Re=10^4$$Re=104 and bulk Richardson number $$Ri=0.25$$Ri=0.25 are performed. The focus of the present study (that extends previous work by the authors) is the effect of surface heterogeneity orientation on boundary-layer structure. The temperature of the upper and lower walls is either homogeneous or varies sinusoidally, where the temperature-wave crests are either normal or parallel to the mean flow (HETx and HETy cases, respectively). Importantly, the horizontal-mean surface temperature is the same in all simulations. The stratification is strong enough to quench turbulence over a homogeneous surface, but turbulence survives over heterogeneous surfaces. In all heterogeneous cases, both molecular diffusion and turbulence transfer momentum down the gradient of mean velocity. The total (turbulent plus diffusive) heat flux is down-gradient, but quasi-organized eddy motions generated by the surface thermal heterogeneity induce heat transfer up the gradient of the mean temperature. Comparative analysis of HETx and HETy cases shows that the configuration with the spanwise heterogeneity is more turbulent and more efficient in transporting momentum and heat vertically than its counterpart with the streamwise heterogeneity. Vertical profiles of mean fields and turbulence moments differ considerably between the HETx and HETy cases, e.g., the streamwise heat flux differs not only in magnitude but also in sign. A close examination of the second-order turbulence moments, vertical-velocity and temperature skewness, and the flow eddy structure helps explain the observed differences between the HETx and HETy cases. The implications of our DNS findings for modelling turbulence in stably-stratified environmental and industrial flows with surface heterogeneity are discussed.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Mironov, D.
Sullivan, Peter P.
Publisher UCAR/NCAR - Library
Publication Date 2024-11-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-10T19:57:42.559434
Metadata Record Identifier edu.ucar.opensky::articles:43281
Metadata Language eng; USA
Suggested Citation Mironov, D., Sullivan, Peter P.. (2024). Turbulence structure and mixing in strongly stable Couette flows over thermally heterogeneous surfaces: Effect of heterogeneity orientation. UCAR/NCAR - Library. https://n2t.net/ark:/85065/d7rj4pwx. Accessed 01 August 2025.

Harvest Source