Uncertainty in contaminant concentration fields resulting from atmospheric boundary layer depth uncertainty

The relationship between atmospheric boundary layer (ABL) depth uncertainty and uncertainty in atmospheric transport and dispersion (ATD) simulations is investigated by examining profiles of predicted concentrations of a contaminant. Because ensembles are an important method for quantifying uncertainty in ATD simulations, this work focuses on the utilization and analysis of ensemble members' ABL structures for ATD simulations. A 12-member physics ensemble of meteorological model simulations drives a 12-member explicit ensemble of ATD simulations. The relationship between ABL depth and plume depth is investigated using ensemble members, which vary both the relevant model physics and the numerical methods used to diagnose ABL depth. New analysis methods are used to analyze ensemble output within an ABL-depth relative framework. Uncertainty due to ABL depth calculation methodology is investigated via a four-member mini-ensemble. When subjected to a continuous tracer release, concentration variability among the ensemble members is largest near the ABL top during the daytime, apparently because of uncertainty in ABL depth. This persists to the second day of the simulation for the 4-member diagnosis mini-ensemble, which varies only the ABL depth, but for the 12-member physics ensemble the concentration variability is large throughout the daytime ABL. This suggests that the increased within-ABL concentration variability on the second day is due to larger differences among the ensemble members' predicted meteorological conditions rather than being solely due to differences in the ABL depth diagnosis methods. This work demonstrates new analysis methods for the relationship between ABL depth and plume depth within an ensemble framework and provides motivation for directly including ABL depth uncertainty from a meteorological model into an ATD model.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2014 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Reen, B.
Schmehl, K.
Young, G.
Lee, Jared
Haupt, Sue Ellen
Stauffer, D.
Publisher UCAR/NCAR - Library
Publication Date 2014-11-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-12T00:04:53.501302
Metadata Record Identifier edu.ucar.opensky::articles:14470
Metadata Language eng; USA
Suggested Citation Reen, B., Schmehl, K., Young, G., Lee, Jared, Haupt, Sue Ellen, Stauffer, D.. (2014). Uncertainty in contaminant concentration fields resulting from atmospheric boundary layer depth uncertainty. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7cz385w. Accessed 23 August 2025.

Harvest Source