Using precipitation observations in a mesoscale short-range ensemble analysis and forecasting system

A simple method to assimilate precipitation data from a synthesis of radar and gauge data is developed to operate alongside an ensemble Kalman filter that assimilates hourly surface observations. The mesoscale ensemble forecast system consists of 25 members with 30-km grid spacing and incorporates variability in both initial and boundary conditions and model physical process schemes. The precipitation assimilation method only incorporates information on when and where rainfall is observed. Model temperature and water vapor mixing ratio profiles at each grid point are modified if rainfall is observed but not predicted, or if rainfall is predicted but not observed. These modifications act to either increase or decrease, respectively, the likelihood that precipitation develops at that grid point. Two cases are examined in which this technique is applied to assimilate precipitation data every 15 min from 1200 to 1800 UTC, while hourly surface observations are also assimilated at the same time using the more sophisticated ensemble Kalman filter approach. Results show that the simple method for assimilating precipitation data helps the model develop precipitation where it is observed, resulting in the precipitation area being reproduced more accurately than in the run without precipitation-data assimilation, while not negatively influencing the positive results from the surface data assimilation. Improvement is also seen in the reliability of precipitation probabilities for a 1 mm h⁻¹ threshold after the assimilation period, indicating that assimilating precipitation data may provide improved forecasts of the mesoscale environment for a few hours.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2008 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Fujita, T.
Stensrud, David
Dowell, David
Publisher UCAR/NCAR - Library
Publication Date 2008-06-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-17T15:57:52.107830
Metadata Record Identifier edu.ucar.opensky::articles:6226
Metadata Language eng; USA
Suggested Citation Fujita, T., Stensrud, David, Dowell, David. (2008). Using precipitation observations in a mesoscale short-range ensemble analysis and forecasting system. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7xw4jz5. Accessed 23 August 2025.

Harvest Source