Displacement error characteristics of 500-hPa cutoff lows in operational GFS forecasts

Cutoff lows are often associated with high-impact weather; therefore, it is critical that operational numerical weather prediction systems accurately represent the evolution of these features. However, medium-range forecasts of upper-level features using the Global Forecast System (GFS) are often subjectively characterized by excessive synoptic progressiveness, i.e., a tendency to advance troughs and cutoff lows too quickly downstream. To better understand synoptic progressiveness errors, this research quantifies seven years of 500-hPa cutoff low position errors over the globe, with the goal of objectively identifying regions where synoptic progressiveness errors are common and how frequently these errors occur. Specifically, 500-hPa features are identified and tracked in 0-240-h 0.25 degrees GFS forecasts during April 2015- March 2022 using an objective cutoff low and trough identification scheme and compared to corresponding 500-hPa GFS analyses. In the Northern Hemisphere, cutoff lows are generally underrepresented in forecasts compared to verifying analyses, particularly over continental midlatitude regions. Features identified in short-to long-range forecasts are generally associated with eastward zonal position errors over the conterminous United States and northern Asia, particularly during the spring and autumn. Similarly, cutoff lows over the Southern Hemisphere midlatitudes are characterized by an eastward displacement bias during all seasons.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Dataset #1 : NCEP GFS 0.25 Degree Global Forecast Grids Historical Archive

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2023 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Lupo, Kevin
Schwartz, Craig S.
Romine, Glen
Publisher UCAR/NCAR - Library
Publication Date 2023-10-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T15:14:19.208026
Metadata Record Identifier edu.ucar.opensky::articles:26798
Metadata Language eng; USA
Suggested Citation Lupo, Kevin, Schwartz, Craig S., Romine, Glen. (2023). Displacement error characteristics of 500-hPa cutoff lows in operational GFS forecasts. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d77h1pm6. Accessed 11 August 2025.

Harvest Source