How does availability of meteorological forcing data impact physically based snowpack simulations?

Physically based models facilitate understanding of seasonal snow processes but require meteorological forcing data beyond air temperature and precipitation (e.g., wind, humidity, shortwave radiation, and longwave radiation) that are typically unavailable at automatic weather stations (AWSs) and instead are often represented with empirical estimates. Research is needed to understand which forcings (after temperature and precipitation) would most benefit snow modeling through expanded observation or improved estimation techniques. Here, the impact of forcing data availability on snow model output is assessed with data-withholding experiments using 3-yr datasets at well-instrumented sites in four climates. The interplay between forcing availability and model complexity is examined among the Utah Energy Balance (UEB), the Distributed Hydrology Soil Vegetation Model (DHSVM) snow submodel, and the snow thermal model (SNTHERM). Sixty-four unique forcing scenarios were evaluated, with different assumptions regarding availability of hourly meteorological observations at each site. Modeled snow water equivalent (SWE) and snow surface temperature Tsurf diverged most often because of availability of longwave radiation, which is the least frequently measured forcing in cold regions in the western United States. Availability of longwave radiation (i.e., observed vs empirically estimated) caused maximum SWE differences up to 234 mm (57% of peak SWE), mean differences up to 6.2°C in Tsurf, and up to 32 days difference in snow disappearance timing. From a model data perspective, more common observations of longwave radiation at AWSs could benefit snow model development and applications, but other aspects (e.g., costs, site access, and maintenance) need consideration.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2016 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Raleigh, Mark
Livneh, Ben
Lapo, Karl
Lundquist, Jessica
Publisher UCAR/NCAR - Library
Publication Date 2016-01-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:09:45.383256
Metadata Record Identifier edu.ucar.opensky::articles:17813
Metadata Language eng; USA
Suggested Citation Raleigh, Mark, Livneh, Ben, Lapo, Karl, Lundquist, Jessica. (2016). How does availability of meteorological forcing data impact physically based snowpack simulations?. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7np25wd. Accessed 24 June 2025.

Harvest Source