Impact of infrared, microwave, and radio occultation satellite observations on operational numerical weather prediction

A comparison of the impact of infrared (IR), microwave (MW), and radio occultation (RO) observations on NCEP’s operational global forecast model over the month of March 2013 is presented. Analyses and forecasts with only IR, MW, and RO observations are compared with analyses and forecasts with no satellite data and with each other. Overall, the patterns of the impact of the different satellite systems are similar, with the MW observations producing the largest impact on the analyses and RO producing the smallest. Without RO observations, satellite radiances are over– or under–bias corrected and RO acts as an anchor observation, reducing the forecast biases globally. Positive correlation coefficients of temperature impacts are generally found between the different satellite observation analyses, indicating that the three satellite systems are affecting the global temperatures in a similar way. However, the correlation in the lower troposphere among all three systems is surprisingly small. Correlations for the moisture field tend to be small in the lower troposphere between the different satellite analyses. The impact of the satellite observations on the 500-hPa geopotential height forecasts is much different in the Northern and Southern Hemispheres. In the Northern Hemisphere, all the satellite observations together make a small positive impact compared to the base (no satellite) forecasts. The IR and MW, but not the RO, make a small positive impact when assimilated alone. The situation is considerably different in the Southern Hemisphere, where all the satellite observations together make a much larger positive impact, and all three observation types (IR, MW, and RO) make similar and significant impacts

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2014 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Cucurull, L.
Anthes, Richard
Publisher UCAR/NCAR - Library
Publication Date 2014-11-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:44:54.528045
Metadata Record Identifier edu.ucar.opensky::articles:14433
Metadata Language eng; USA
Suggested Citation Cucurull, L., Anthes, Richard. (2014). Impact of infrared, microwave, and radio occultation satellite observations on operational numerical weather prediction. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d75m66pm. Accessed 20 June 2025.

Harvest Source