Impact of solar geoengineering on wildfires in the 21st century in CESM2/WACCM6

We quantify future changes in wildfire burned area and carbon emissions in the 21st century under four Shared Socioeconomic Pathways (SSPs) scenarios and two SSP5-8.5-based solar geoengineering scenarios with a target surface temperature defined by SSP2-4.5 - solar irradiance reduction (G6solar) and stratospheric sulfate aerosol injections (G6sulfur) - and explore the mechanisms that drive solar geoengineering impacts on fires. This study is based on fully coupled climate-chemistry simulations with simulated occurrence of fires (burned area and carbon emissions) using the Whole Atmosphere Community Climate Model version 6 (WACCM6) as the atmospheric component of the Community Earth System Model version 2 (CESM2). Globally, total wildfire burned area is projected to increase over the 21st century under scenarios without geoengineering and decrease under the two geoengineering scenarios. By the end of the century, the two geoengineering scenarios have lower burned area and fire carbon emissions than not only their base-climate scenario SSP5-8.5 but also the targeted-climate scenario SSP2-4.5.Geoengineering reduces wildfire occurrence by decreasing surface temperature and wind speed and increasing relative humidity and soil water, with the exception of boreal regions where geoengineering increases the occurrence of wildfires due to a decrease in relative humidity and soil water compared with the present day. This leads to a global reduction in burned area and fire carbon emissions by the end of the century relative to their base-climate scenario SSP5-8.5. However, geoengineering also yields reductions in precipitation compared with a warming climate, which offsets some of the fire reduction. Overall, the impacts of the different driving factors are larger on burned area than fire carbon emissions. In general, the stratospheric sulfate aerosol approach has a stronger fire-reducing effect than the solar irradiance reduction approach.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Tang, Wenfu
Tilmes, Simone
Lawrence, David M.
Li, Fang
He, Cenlin
Emmons, Louisa K.
Buchholz, Rebecca R.
Xia, Lili
Publisher UCAR/NCAR - Library
Publication Date 2023-05-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:27:38.190316
Metadata Record Identifier edu.ucar.opensky::articles:26323
Metadata Language eng; USA
Suggested Citation Tang, Wenfu, Tilmes, Simone, Lawrence, David M., Li, Fang, He, Cenlin, Emmons, Louisa K., Buchholz, Rebecca R., Xia, Lili. (2023). Impact of solar geoengineering on wildfires in the 21st century in CESM2/WACCM6. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7z03d4q. Accessed 22 June 2025.

Harvest Source