Impact of UAS Global Hawk dropsonde data on tropical and extratropical cyclone forecasts in 2016

A preliminary investigation into the impact of dropsonde observations from the Global Hawk (GH) on tropical and extratropical forecasts is performed using the National Centers for Environmental Prediction (NCEP) Global Data Assimilation System (GDAS). Experiments are performed during high-impact weather events that were sampled as part of the NOAA Unmanned Aerial Systems (UAS) Sensing Hazards with Operational Unmanned Technology (SHOUT) field campaigns in 2016: 1) three extratropical systems in February 2016 and 2) Hurricanes Matthew and Nicole in the western Atlantic. For these events, the benefits of GH observations under a satellite data gap scenario are also investigated. It is found that the assimilation of GH dropsondes reduces the track error for both Matthew and Nicole; the improvements are as high as 20% beyond 60 h. Additionally, the localized dropsondes reduce global forecast track error for four tropical cyclones by up to 9%. Results are mixed under a satellite gap scenario, where only Hurricane Matthew is improved from assimilated dropsondes. The improved storm track is attributed to a better representation of the steering flow and atmospheric midlevel pattern. For all cases, dropsondes reduce the root-mean-square error in temperature, relative humidity, wind, and sea level pressure by 3%-8% out to 96 h. Additional benefits from GH dropsondes are obtained for precipitation, with higher skill scores over the southeastern United States versus control forecasts of up to 8%, as well as for low-level parameters important for severe weather prediction. The findings from this study are preliminary and, therefore, more cases are needed for statistical significance.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related CreativeWork #1 : NCAR Airborne Vertical Atmospheric Profiling System (AVAPS)

Related Dataset #1 : ECMWF's Operational Model Analysis, starting in 2011

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2018 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Kren, A. C.
Cucurull, L.
Wang, Hongli
Publisher UCAR/NCAR - Library
Publication Date 2018-10-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:24:08.708006
Metadata Record Identifier edu.ucar.opensky::articles:21897
Metadata Language eng; USA
Suggested Citation Kren, A. C., Cucurull, L., Wang, Hongli. (2018). Impact of UAS Global Hawk dropsonde data on tropical and extratropical cyclone forecasts in 2016. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7n019c2. Accessed 20 June 2025.

Harvest Source