Impacts of thunderstorm‐generated gravity waves on the ionosphere‐thermosphere using TIEGCM‐NG/MAGIC simulations and comparisons with GNSS TEC, ICON, and COSMIC‐2 observations

We use the TIEGCM‐NG nudged by MAGIC gravity waves to study the impacts of a severe thunderstorm system, with a hundred tornado touchdowns, on the ionospheric and thermospheric disturbances. The generated waves induce a distinct concentric ring pattern on GNSS TIDs with horizontal scales of 150–400 km and phase speeds of 150–300 m/s, which is well simulated by the model. The waves show substantial vertical evolution in period, initially dominated by 0.5 hr at 200 km, shifting to 0.25 hr and with more higher‐frequency waves appearing at higher altitudes (∼400 km). The TADs reach amplitudes of 100 m/s, 60 m/s, 80 K, and 10% in horizontal winds, vertical wind, temperature, and relative neutral density, respectively. Significantly perturbations in electron density cause dramatic changes in its nighttime structure around 200 km and near the EIA crest. The concentric TIDs are also simulated in ion drifts and mapped from the Tornado region to the conjugate hemisphere likely due to neutral wind‐induced electric field perturbations. The waves manage to impact the ionosphere at altitudes of ICON and COSMIC‐2, which pass through the region of interest on a total of 8 separate orbits. In situ ion density observations from these spacecrafts reveal periodic fluctuations that frequently show good agreement with the TIEGCM‐NG simulation. The O + fraction observations from ICON indicate that the density fluctuations are the result of vertical transport of the ions in this region, which could result from either direct forcing by neutral winds or electrodynamic coupling.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Lu, X.
Wu, Haonan
Heale, C.
England, S.
Zhang, S.
Publisher UCAR/NCAR - Library
Publication Date 2024-12-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-10T19:55:54.753216
Metadata Record Identifier edu.ucar.opensky::articles:42381
Metadata Language eng; USA
Suggested Citation Lu, X., Wu, Haonan, Heale, C., England, S., Zhang, S.. (2024). Impacts of thunderstorm‐generated gravity waves on the ionosphere‐thermosphere using TIEGCM‐NG/MAGIC simulations and comparisons with GNSS TEC, ICON, and COSMIC‐2 observations. UCAR/NCAR - Library. https://n2t.net/ark:/85065/d7j38xw0. Accessed 06 August 2025.

Harvest Source