Inhomogeneous background error modeling for WRF-Var using the NMC method

Background error modeling plays a key role in a variational data assimilation system. The National Meteorological Center (NMC) method has been widely used in variational data assimilation systems to generate a forecast error ensemble from which the climatological background error covariance can be modeled. In this paper, the characteristics of the background error modeling via the NMC method are investigated for the variational data assimilation system of the Weather Research and Forecasting (WRF-Var) Model. The background error statistics are extracted from short-term 3-km-resolution forecasts in June, July, and August 2012 over a limited-area domain. It is found 1) that background error variances vary from month to month and also have a feature of diurnal variations in the low-level atmosphere and 2) that u- and υ-wind variances are underestimated and their autocorrelation length scales are overestimated when the default control variable option in WRF-Var is used. A new approach of control variable transform (CVT) is proposed to model the background error statistics based on the NMC method. The new approach is capable of extracting inhomogeneous and anisotropic climatological information from the forecast error ensemble obtained via the NMC method. Single observation assimilation experiments show that the proposed method not only has the merit of incorporating geographically dependent covariance information, but also is able to produce a multivariate analysis. The results from the data assimilaton and forecast study of a real convective case show that the use of the new CVT improves synoptic weather system and precipitation forecasts for up to 12 h.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2014 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Wang, Hongli
Huang, Xiang-Yu
Sun, Juanzhen
Xu, Dongmei
Zhang, Man
Fan, Shuiyong
Zhong, Jiqin
Publisher UCAR/NCAR - Library
Publication Date 2014-10-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:43:31.534478
Metadata Record Identifier edu.ucar.opensky::articles:14410
Metadata Language eng; USA
Suggested Citation Wang, Hongli, Huang, Xiang-Yu, Sun, Juanzhen, Xu, Dongmei, Zhang, Man, Fan, Shuiyong, Zhong, Jiqin. (2014). Inhomogeneous background error modeling for WRF-Var using the NMC method. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d74t6kcw. Accessed 19 June 2025.

Harvest Source