Insights into the long-term (2005-2021) spatiotemporal evolution of summer ozone production sensitivity in the Northern Hemisphere derived with the Ozone Monitoring Instrument (OMI)

Tropospheric ozone (O3) formation depends on the relative abundance of precursor species, nitrogen oxides (NOx), and volatile organic compounds (VOCs). Advancements in satellite retrievals of formaldehyde (HCHO) and nitrogen dioxide (NO2) vertical column densities (VCDs), and the corresponding HCHO/NO2 ratios (FNRs), provide the opportunity to diagnose the spatiotemporal evolution of O3 production sensitivity regimes. This study investigates trends of Ozone Monitoring Instrument (OMI)-derived summertime VCD HCHO, NO2, and FNRs in the Northern Hemisphere from 2005 to 2021. FNR trends were analyzed for polluted regions, specifically for 46 highly populated cities, over the entire 17-year period and in 2020 when global anthropogenic emissions were reduced due to COVID-19 lockdown restrictions. It was determined that OMI-derived FNRs have increased on average by ∼ 65 % across cities in the Northern Hemisphere. Increasing OMI-derived FNRs indicates a general transition from radical-limited to NOx-limited regimes. The increasing trend is driven by reduced NO2 concentrations because of emission-control strategies of NOx. OMI FNR trends were compared to ground-based in situ measurements in US cities, and it was determined that they can capture the trends in increasing FNRs (R=0.91) and decreasing NO2 (R=0.98) occurring at the surface. OMI FNRs in urban areas were higher (∼ 20 %) in 2020 for most cities studied here compared to 2019 and 2021. In addition to studying the longest period of OMI FNRs across the Northern Hemisphere to date, the capabilities and challenges of using satellite VCD FNRs to study surface-level O3 production sensitivity regimes are discussed.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Dataset #1 : OMI/Aura Formaldehyde (HCHO) Total Column Daily L3 Weighted Mean Global 0.1deg Lat/Lon Grid V003

Related Dataset #2 : CEDS v_2024_07_08 Release Emission Data

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Johnson, M. S.
Philip, S.
Meech, Scott
Kumar, Rajesh
Sorek-Hamer, M.
Shiga, Y. P.
Jung, J.
Publisher UCAR/NCAR - Library
Publication Date 2024-09-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-10T19:58:48.450327
Metadata Record Identifier edu.ucar.opensky::articles:42529
Metadata Language eng; USA
Suggested Citation Johnson, M. S., Philip, S., Meech, Scott, Kumar, Rajesh, Sorek-Hamer, M., Shiga, Y. P., Jung, J.. (2024). Insights into the long-term (2005-2021) spatiotemporal evolution of summer ozone production sensitivity in the Northern Hemisphere derived with the Ozone Monitoring Instrument (OMI). UCAR/NCAR - Library. https://n2t.net/ark:/85065/d79p360f. Accessed 11 August 2025.

Harvest Source