Lidar backscatter signal recovery from phototransistor systematic effect by deconvolution

Backscatter lidar detection systems have been designed and integrated at NASA Langley Research Center using IR heterojunction phototransistors. The design focused on maximizing the system signal-to-noise ratio rather than noise minimization. The detection systems have been validated using the Raman-shifted eye-safe aerosol lidar (REAL) at the National Center for Atmospheric Research. Incorporating such devices introduces some systematic effects in the form of blurring to the backscattered signals. Characterization of the detection system transfer function aided in recovering such effects by deconvolution. The transfer function was obtained by measuring and fitting the system impulse response using single-pole approximation. An iterative deconvolution algorithm was implemented in order to recover the system resolution, while maintaining high signal-to-noise ratio. Results indicated a full recovery of the lidar signal, with resolution matching avalanche photodiodes. Application of such a technique to atmospheric boundary and cloud layers data restores the range resolution, up to 60 m, and overcomes the blurring effects.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2008 Optical Society of America. This paper was published in Applied Optics and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: [article URL]. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Refaat, T.
Ismail, S.
Abedin, M.
Spuler, Scott
Mayor, S.
Singh, U.
Publisher UCAR/NCAR - Library
Publication Date 2008-10-10T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:27:48.984726
Metadata Record Identifier edu.ucar.opensky::articles:8876
Metadata Language eng; USA
Suggested Citation Refaat, T., Ismail, S., Abedin, M., Spuler, Scott, Mayor, S., Singh, U.. (2008). Lidar backscatter signal recovery from phototransistor systematic effect by deconvolution. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7h70gg8. Accessed 19 June 2025.

Harvest Source