Planetary‐scale wave impacts on the Venusian upper mesosphere and lower thermosphere

This work examines the planetary wave-induced variability within the upper mesosphere/lower thermosphere of Venus by utilizing the Venus Thermospheric General Circulation Model (VTGCM). Rossby and Kelvin wave perturbations are driven by variations in the geopotential height of the VTGCM lower boundary (similar to 70 km). A suite of simulations was conducted to examine the impact of the individual and combined waves propagating from two different lower boundary conditions (uniform and varying). The Kelvin wave is the more dominant wave which produces the most variability. The combination of the Kelvin and Rossby waves provides a maximum temperature amplitude of 13 K at 92 km and maximum zonal wind amplitude of 23 m/s at 102 km. The combined waves overall are able to propagate up to 125 km. Most of the variation within the temperature, winds, and composition occurs between 70 and 110 km. The varying lower boundary increases the magnitude of the wave deposition and atmospheric responses, but weakly changes the propagation altitude. The thermal variation due to the planetary waves does not reproduce most observed variations. The simulated O-2 IR nightglow emission is sensitive to the waves with respect to intensity and local time, but lacks latitudinal variation. The integrated intensity ranges from 1.2 MR to 1.65 MR and the local time ranges from 0.33 local time to 23.6 local time. Overall, planetary waves do affect the atmospheric structure, but there are still large observed variations that planetary waves alone cannot explain (i.e., thermal structure).

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2021 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Brecht, A. S.
Bougher, S. W.
Shields, D.
Liu, Hanli
Publisher UCAR/NCAR - Library
Publication Date 2021-01-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:14:37.368192
Metadata Record Identifier edu.ucar.opensky::articles:24057
Metadata Language eng; USA
Suggested Citation Brecht, A. S., Bougher, S. W., Shields, D., Liu, Hanli. (2021). Planetary‐scale wave impacts on the Venusian upper mesosphere and lower thermosphere. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7tf01pf. Accessed 17 June 2025.

Harvest Source