Prediction of energy dissipation rates for aviation turbulence. Part II: Nowcasting convective and nonconvective turbulence

In addition to turbulence forecasts, which can be used for strategic planning for turbulence avoidance, short-term nowcasts can augment longer-term forecasts by providing much more timely and accurate turbulence locations for real-time tactical avoidance of turbulence hazards, especially those related to short-lived convection. This paper describes a turbulence-nowcasting algorithm that combines recent short-term turbulence forecasts with all currently available direct turbulence observations and inferences of turbulence from other sources. Building upon the need to provide forecasts that are aircraft independent, the nowcasts provide estimates of an atmospheric metric of turbulence, namely, the energy dissipation rate to the one-third power (EDR). Some observations directly provide EDR, such as in situ observations from select commercial aircraft and ground-based radar algorithm output, whereas others must be translated to EDR. A strategy is provided for mapping turbulence observations, such as pilot reports (PIREPs), and inferences from other relevant observational data sources, such as observed surface wind gusts, into EDR. These remapped observation values can then be combined with short-term turbulence forecasts and other convective diagnostics of turbulence to provide a turbulence nowcast of EDR in the national airspace. Case studies are provided to illustrate the algorithm procedure and benefits. The EDR nowcasts are compared with aircraft in situ EDR observations and PIREPs converted to EDR to obtain metrics of statistical performance. It is shown by one common performance metric, the area under the relative operating characteristic curve, that the turbulence nowcasts with assimilated observations considerably outperform the corresponding turbulence forecasts.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2017 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Pearson, J. M.
Sharman, R. D.
Publisher UCAR/NCAR - Library
Publication Date 2017-02-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:09:57.206068
Metadata Record Identifier edu.ucar.opensky::articles:19625
Metadata Language eng; USA
Suggested Citation Pearson, J. M., Sharman, R. D.. (2017). Prediction of energy dissipation rates for aviation turbulence. Part II: Nowcasting convective and nonconvective turbulence. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d76975cr. Accessed 15 June 2025.

Harvest Source