Quality control of geostationary lightning mapper observations for tropical cyclone applications

The Geostationary Lightning Mapper (GLM) has been providing unprecedented observations of total lightning since becoming operational in 2017. The potential for GLM observations to be used for forecasting and analyzing tropical cyclone (TC) structure and intensity has been complicated by inconsistencies in the GLM data from a number of artifacts. The algorithm that processes raw GLM data has improved with time; however, the need for a consistent long-term dataset has motivated the development of quality control (QC) techniques to help remove clear artifacts such as blooming events, spurious false lightning, “bar” effects, and sun glint. Simple QC methods are applied that include scaled maximum energy thresholds and minima in the variance of lightning group area and group energy. QC and anomaly detection methods based on machine learning (ML) are also explored. Each QC method is successfully able to remove artifacts in the GLM observations while maintaining the fidelity of the GLM observations within TCs. As the GLM processing algorithm has improved with time, the amount of QC flagged lightning within 100 km of Atlantic TCs is reduced, from 70% during 2017, to 10% in 2018, to 2% during 2021. These QC methods are relevant to the design of ML-based forecasting techniques which could pick up on artifacts rather than the signal of interest in TCs if QC was not applied beforehand.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Dataset #1 : NOAA GOES-R Series Geostationary Lightning Mapper (GLM) Level 2 Lightning Detection: Events, Groups, and Flashes

Related Preprint #1 : CIRA Guide to Custom Loss Functions for Neural Networks in Environmental Sciences -- Version 1

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Trabing, Benjamin
Hilburn, K.
Stevenson, S.
Musgrave, K. D.
DeMaria, M.
Publisher UCAR/NCAR - Library
Publication Date 2024-09-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-10T19:58:55.156058
Metadata Record Identifier edu.ucar.opensky::articles:42308
Metadata Language eng; USA
Suggested Citation Trabing, Benjamin, Hilburn, K., Stevenson, S., Musgrave, K. D., DeMaria, M.. (2024). Quality control of geostationary lightning mapper observations for tropical cyclone applications. UCAR/NCAR - Library. https://n2t.net/ark:/85065/d7p84h6h. Accessed 12 August 2025.

Harvest Source