Studies on the competition between homogeneous and heterogeneous ice nucleation in cirrus formation

Cirrus ice crystals are produced heterogeneously on ice-nucleating particles (INPs) and homogeneously in supercooled liquid solution droplets. They grow by uptake of water molecules from the ice-supersaturated vapor. The precursor particles, characterized by disparate ice nucleation abilities and number concentrations, compete for available vapor during ice formation events. We investigate cirrus formation events systematically in different temperature and updraft regimes, and for different INP number concentrations and time-independent nucleation efficiencies. We consider vertical air motion variability due to mesoscale gravity waves and effects of supersaturation-dependent deposition coefficients for water molecules on ice surfaces. We analyze ice crystal properties to better understand the dynamics of competing nucleation processes. We study the reduction of ice crystal numbers produced by homogeneous freezing due to INPs in both, individual simulations assuming constant updraft speeds and in ensemble simulations based on a stochastic representation of vertical wind speed fluctuations. We simulate and interpret probability distributions of total nucleated ice crystal number concentrations, showing signatures of homogeneous and heterogeneous nucleation. At typically observed, mean updraft speeds (approximate to 15 cm s(-1)) competing nucleation should occur frequently, even at rather low INP number concentrations (<10 L-1). INPs increase cirrus occurrence and may alter cirrus microphysical properties without entirely suppressing homogeneous freezing events. We suggest to improve ice growth models, especially for low cirrus temperatures (<220 K) and low ice supersaturation (<0.3).

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Kärcher, B.
DeMott, P. J.
Jensen, Eric J.
Harrington, J. Y.
Publisher UCAR/NCAR - Library
Publication Date 2022-02-16T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:16:57.397666
Metadata Record Identifier edu.ucar.opensky::articles:25228
Metadata Language eng; USA
Suggested Citation Kärcher, B., DeMott, P. J., Jensen, Eric J., Harrington, J. Y.. (2022). Studies on the competition between homogeneous and heterogeneous ice nucleation in cirrus formation. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7hd808j. Accessed 18 June 2025.

Harvest Source