Sudden reduction of Antarctic sea ice despite cooling after nuclear war

A large-scale nuclear war could inject massive amounts of soot into the stratosphere, triggering rapid global climate change. In climate model simulations of nuclear war, global cooling contributes to an expansion of sea ice in the Northern Hemisphere. However, in the Southern Hemisphere (SH), an initial expansion of sea ice shifts suddenly to a 30% loss of sea ice volume over the course of a single melting season in the largest nuclear war simulation. In smaller nuclear war simulations an expansion in sea ice is instead observed which lasts for approximately 15 years. In contrast, in the largest nuclear war simulation, Antarctic sea ice remains below the long term control mean for 15 years, indicating a threshold that must be crossed to cause the response. Declining sea ice in the SH following a global cooling event has been previously attributed to shifts in the zonal winds around Antarctica, which can reduce the strength of the Weddell Gyre. In climate model simulations of nuclear war, the primary mechanisms responsible for Antarctic sea ice loss are: (a) enhanced atmospheric poleward heat transport through teleconnections with a strong nuclear war-driven El Nino, (b) increased upwelling of warm subsurface waters in the Weddell Sea due to changes in wind stress curl, and (c) decreased equatorward Ekman transport due to weakened Southern Ocean westerlies. The prospect of sudden Antarctic sea ice loss after an episode of global cooling may have implications for solar geoengineering and further motivates this study of the underlying mechanisms of change.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Dataset #1 : WACCM4 5Tg-46.8Tg India-Pakistan Cases

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2023 American Geophysical Union (AGU).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Coupe, J.
Harrison, C.
Robock, A.
DuVivier, A.
Maroon, E.
Lovenduski, N. S.
Bachman, Scott
Landrum, Laura
Bardeen, Charles
Publisher UCAR/NCAR - Library
Publication Date 2023-01-13T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T15:55:22.121958
Metadata Record Identifier edu.ucar.opensky::articles:26638
Metadata Language eng; USA
Suggested Citation Coupe, J., Harrison, C., Robock, A., DuVivier, A., Maroon, E., Lovenduski, N. S., Bachman, Scott, Landrum, Laura, Bardeen, Charles. (2023). Sudden reduction of Antarctic sea ice despite cooling after nuclear war. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d75d8ww8. Accessed 05 August 2025.

Harvest Source