The representation of Convectively Coupled Kelvin Waves in simulations with modified wave amplitudes

Convectively coupled Kelvin waves (CCKWs) are important drivers of tropical weather and may influence extreme rainfall and tropical cyclone formation. However, directly attributing these impacts to CCKWs remains a challenge. Numerical models also struggle to simulate the convective coupling of CCKWs. To address these gaps in understanding, this study examines a set of global simulations in which CCKW amplitudes are modified in the initial conditions. The Model for Prediction Across Scales -Atmosphere is used to simulate a time period in which several CCKWs coexisted around the globe, including an unusually strong CCKW located over the Atlantic. Prior to running the simulation, Kelvin-filtered fields are identified in initial conditions and used to either amplify or dampen the initial wave amplitude. This method is effective at robustly changing the strength and structure of simulated CCKWs and can illuminate their convective coupling. Rainfall intensity within simulated CCKWs is shown to be partially controlled by column saturation fraction and deep convective inhibition. Despite the accurate depiction of most CCKWs during this time period, however, these experiments fail to simulate convective coupling in the strong Atlantic CCKW. This is true even after amplifying this wave at initialization. The cause of this failure is unclear and motivates additional work into the modeling and predictability of CCKW events. Overall, this study demonstrates that modifying CCKW amplitudes can serve as a useful tool for understanding CCKWs. This method may also be useful for future attributional work on the influence of CCKWs on other phenomena.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Dataset #1 : NOAA Climate Data Record (CDR) of Gridded Satellite Data from ISCCP B1 (GridSat-B1) Infrared Channel Brightness Temperature, Version 2

Related Dataset #2 : Replication Data for: The Representation of Convectively Coupled Kelvin Waves in Simulations with Modified Wave Amplitudes

Related Service #1 : Cheyenne: SGI ICE XA Cluster

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Lawton, Q. A.
Rios-Berrios, Rosimar
Majumdar, S. J.
Emerton, R.
Magnusson, L.
Publisher UCAR/NCAR - Library
Publication Date 2024-06-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-10T20:01:44.891889
Metadata Record Identifier edu.ucar.opensky::articles:27250
Metadata Language eng; USA
Suggested Citation Lawton, Q. A., Rios-Berrios, Rosimar, Majumdar, S. J., Emerton, R., Magnusson, L.. (2024). The representation of Convectively Coupled Kelvin Waves in simulations with modified wave amplitudes. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d78w3jh2. Accessed 12 August 2025.

Harvest Source