Understanding the influence of assimilating subsets of enhanced atmospheric motion vectors on numerical analyses and forecasts of tropical cyclone track and intensity with an ensemble Kalman filter

Recent studies have shown that assimilating enhanced satellite-derived atmospheric motion vectors (AMVs) has improved mesoscale forecast of tropical cyclones (TC) track and intensity. The authors conduct data-denial experiments to understand where the TC analyses and forecasts benefit the most from the enhanced AMV information using an ensemble Kalman filter and the Weather Research and Forecasting Model. The Cooperative Institute for Meteorological Satellite Studies at the University of Wisconsin provides enhanced AMV datasets with higher density and temporal resolution using shorter-interval image triplets for the duration of Typhoon Sinlaku and Hurricane Ike (both 2008). These AMV datasets are then spatially and vertically subsetted to create six parallel cycled assimilation-forecast experiments for each TC: all AMVs; AMVs withheld between 100 and 350 hPa (upper layer), between 350 and 700 hPa (middle layer), and between 700 and 999 hPa (lower layer); and only AMVs within (interior) and outside (exterior) 1000-km radius of the TC center. All AMV subsets are found to be useful in some capacity. The interior and upper-layer AMVs are particularly crucial for improving initial TC position, intensity, and the three-dimensional wind structure along with their forecasts. Compared with denying interior or exterior AMVs, withholding AMVs in different tropospheric layers had less impact on TC intensity and size forecasts. The ensemble forecast is less certain (larger spread) in providing accurate TC track, intensity, and size when upper-layer AMVs or interior AMVs are withheld. This information could be useful to potential targeting scenarios, such as activating and focusing satellite rapid-scan operations, and decisions regarding observing system assessments and deployments.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2015 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Wu, Ting-Chi
Velden, Christopher
Majumdar, Sharanya
Liu, Hui
Anderson, Jeffrey
Publisher UCAR/NCAR - Library
Publication Date 2015-07-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:43:04.457572
Metadata Record Identifier edu.ucar.opensky::articles:16788
Metadata Language eng; USA
Suggested Citation Wu, Ting-Chi, Velden, Christopher, Majumdar, Sharanya, Liu, Hui, Anderson, Jeffrey. (2015). Understanding the influence of assimilating subsets of enhanced atmospheric motion vectors on numerical analyses and forecasts of tropical cyclone track and intensity with an ensemble Kalman filter. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7d50p53. Accessed 21 June 2025.

Harvest Source