An improved convection parameterization with detailed aerosol-cloud microphysics for a global model

A new microphysical treatment that includes aerosol–cloud interactions and secondary ice production (SIP) mechanisms is implemented in the convection scheme of the Community Atmosphere Model, version 6 (CAM6). The approach is to embed a 1D Lagrangian parcel model in the bulk convective plume of the existing deep convection parameterization. Aerosol activation, growth processes including collision/coalescence, and three processes of SIP mechanisms, two of which are normally overlooked in atmospheric models, are represented in this embedded parcel model. These microphysical processes are treated with a hybrid bin/bulk scheme and a high spatial and temporal resolution for the integration of the embedded parcel in 1D, allowing vertical velocity to determine the microphysical evolution following the in-cloud motion during ascent. Simulations of an observed case (Midlatitude Continental Convective Clouds Experiment) of a mesoscale convective system in Oklahoma, United States, with a single-column model (SCAM) version of CAM, are compared with aircraft in situ and ground-based observations of microphysical properties from the convection and precipitation. Results from the validation show the new microphysical scheme has a good representation of the ice initiation in the bulk convective plume, including the known and empirically quantified pathways of primary and secondary initiation, with benefits for the accuracy of properties of its supercooled cloud liquid. The sensitivity simulations and use of tagging tracers for the validated simulation confirm that the newly included SIP mechanisms are of paramount importance for convective microphysics and can be successfully treated in the global model.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Software #1 : An Improved Convection Parameterization with Detailed Aerosol–Cloud Microphysics for a Global Model

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2025 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Jadav, A.
Waman, D.
Pant, C. S.
Patade, S.
Gautam, M.
Phillips, V.
Bansemer, Aaron R.
Barahona, D.
Storelmov, T.
Publisher UCAR/NCAR - Library
Publication Date 2025-01-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-10T19:55:43.740754
Metadata Record Identifier edu.ucar.opensky::articles:42922
Metadata Language eng; USA
Suggested Citation Jadav, A., Waman, D., Pant, C. S., Patade, S., Gautam, M., Phillips, V., Bansemer, Aaron R., Barahona, D., Storelmov, T.. (2025). An improved convection parameterization with detailed aerosol-cloud microphysics for a global model. UCAR/NCAR - Library. https://n2t.net/ark:/85065/d7639v4k. Accessed 01 August 2025.

Harvest Source