Development and evaluation of a mosaic approach in the WRF-Noah framework

The current Weather Research and Forecasting (WRF)-Noah modeling framework considers only the dominant land cover type within each grid cell, which here is referred to as the “dominant” approach. In order to assess the impact of subgrid-scale variability in land cover composition, a mosaic/tiling approach (hereafter the “mosaic” approach) is implemented into the coupled WRF-Noah modeling system. In the mosaic approach, a certain number (N) of tiles, each representing a land cover category, is considered within each grid cell. WRF simulations of a clear sky day and a rainfall period over a heterogeneous urban/suburban setting show that the two approaches generate differences in the surface energy balance, land surface temperature, near-surface states, boundary layer growth, as well as rainfall distribution. Evaluation against a variety of observational data (including surface flux measurements, the MODIS land surface temperature product, and radar rainfall estimates) indicates that, compared to the dominant approach, the mosaic approach has a better performance. In addition, WRF-simulated results with the mosaic approach are less sensitive to the spatial resolution of the grid: Larger differences are observed in simulations of different resolutions with the dominant approach. The effect of increasing the number of tiles (N) on the WRF-simulated results is also examined. When N increases from 1 (i.e., the dominant approach) to 15, changes in the ground heat flux, sensible heat flux, surface temperature, and 2 m air temperature are more significant during nighttime. Changes in the 2 m specific humidity are more significant during daytime, and changes in the boundary layer height are most prominent during the morning and afternoon transitional periods.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2013 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Li, Dan
Bou-Zeid, Elie
Barlage, Michael
Chen, Fei
Smith, James
Publisher UCAR/NCAR - Library
Publication Date 2013-11-16T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:48:16.244639
Metadata Record Identifier edu.ucar.opensky::articles:13244
Metadata Language eng; USA
Suggested Citation Li, Dan, Bou-Zeid, Elie, Barlage, Michael, Chen, Fei, Smith, James. (2013). Development and evaluation of a mosaic approach in the WRF-Noah framework. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7gx4chk. Accessed 17 June 2025.

Harvest Source