Impact of combined assimilation of radar and rainfall data on short-term heavy rainfall prediction: A case study

Radar and surface rainfall observations are two sources of operational data crucial for heavy rainfall prediction. Their individual values on improving convective forecasting through data assimilation have been examined in the past using convection-permitting numerical models. However, the benefit of their simultaneous assimilations has not yet been evaluated. The objective of this study is to demonstrate that, using a 4D-Var data assimilation system with a microphysical scheme, these two data sources can be assimilated simultaneously and the combined assimilation of radar data and estimated rainfall data from radar reflectivity and surface network can lead to improved short-term heavy rainfall prediction. In our study, a combined data assimilation experiment is compared with a rainfall-only and a radar-only (with or without reflectivity) experiments for a heavy rainfall event occurring in Taiwan during the passage of a mei-yu system. These experiments are conducted by applying the Weather Research and Forecasting (WRF) 4D-Var data assimilation system with a 20-min time window aiming to improve 6-h convective heavy rainfall prediction. Our results indicate that the rainfall data assimilation contributes significantly to the analyses of humidity and temperature whereas the radar data assimilation plays a crucial role in wind analysis, and further, combining the two data sources results in reasonable analyses of all three fields by eliminating large, unphysical analysis increments from the experiments of assimilating individual data only. The results also show that the combined assimilation improves forecasts of heavy rainfall location and intensity of 6-h accumulated rainfall for the case studied.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2020 American Meteorological Society.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Sun, Juanzhen
Zhang, Ying
Ban, Junmei
Hong, Jing-Shan
Lin, Chung-Yi
Publisher UCAR/NCAR - Library
Publication Date 2020-05-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:31:49.432616
Metadata Record Identifier edu.ucar.opensky::articles:23350
Metadata Language eng; USA
Suggested Citation Sun, Juanzhen, Zhang, Ying, Ban, Junmei, Hong, Jing-Shan, Lin, Chung-Yi. (2020). Impact of combined assimilation of radar and rainfall data on short-term heavy rainfall prediction: A case study. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7833w7p. Accessed 15 June 2025.

Harvest Source