Quantitative precipitation estimation of the epic 2013 Colorado flood event: Polarization radar-based variational scheme

The accuracy of rain-rate estimation using polarimetric radar measurements has been improved as a result of better characterization of radar measurement quality and rain microphysics. In the literature, a variety of power-law relations between polarimetric radar measurements and rain rate are described because of the dynamic or varying nature of rain microphysics. A variational technique that concurrently takes into account radar observational error and dynamically varying rain microphysics is proposed in this study. Rain-rate estimation using the variational algorithm that uses event-based observational error and background rain climatological values is evaluated using observing system simulation experiments (OSSE), and its performance is demonstrated in the case of an epic Colorado flood event. The rain event occurred between 11 and 12 September 2013. The results from OSSE show that the variational algorithm with event-based observational error consistently estimates more accurate rain rate than does the "R(ZHH, ZDR)" power-law algorithm. On the contrary, the usage of ad hoc or improper observational error degrades the performance of the variational method. Furthermore, the variational algorithm is less sensitive to the observational error of differential reflectivity ZDR than is the R(ZHH, ZDR) algorithm. The variational quantitative precipitation estimation (QPE) retrieved more accurate rainfall estimation than did the power-law dual-polarization QPE in this particular event, despite the fact that both algorithms used the same dual-polarization radar measurements from the Next Generation Weather Radar (NEXRAD).

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2016 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Chang, Wei-Yu
Vivekanandan, Jothiram
Ikeda, Kyoko
Lin, Pay-Liam
Publisher UCAR/NCAR - Library
Publication Date 2016-07-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:01:09.555557
Metadata Record Identifier edu.ucar.opensky::articles:18593
Metadata Language eng; USA
Suggested Citation Chang, Wei-Yu, Vivekanandan, Jothiram, Ikeda, Kyoko, Lin, Pay-Liam. (2016). Quantitative precipitation estimation of the epic 2013 Colorado flood event: Polarization radar-based variational scheme. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7xk8h7r. Accessed 16 June 2025.

Harvest Source