Sublimation of snow

Snow is a vital part of water resources, and sublimation may remove 10%–90% of snowfall from the system. To improve our understanding of the physics that govern sublimation rates, as well as how those rates might change with the climate, we deployed an array of four towers with over 100 instruments from NCAR's Integrated Surface Flux System from November 2022 to June 2023 in the East River watershed, Colorado, in conjunction with the U.S. Department of Energy's Surface Atmosphere Integrated Field Laboratory (SAIL) and the National Oceanic and Atmospheric Administration (NOAA)'s Study of Precipitation, the Lower Atmosphere and Surface for Hydrometeorology (SPLASH) campaigns. Mass balance observations, snow pits, particle flux sensors, and terrestrial lidar scans of the evolving snowfield demonstrated how blowing snow influences sublimation rates, which we quantified with latent heat fluxes measured by eddy-covariance systems at heights 1–20 m above the snow surface. Detailed temperature profiles at finer resolutions highlighted the role of the stable boundary layer. Four-stream radiometers indicated the important role of changing albedo in the energy balance and its relationship to water vapor losses. Collectively, these observations span scales from seconds to seasons, from boundary layer turbulence to valley circulation to mesoscale meteorology. We describe the field campaign, highlights in the observations, and outreach and education products we are creating to facilitate cross-disciplinary dialogue and convey relevant findings to those seeking to better understand Colorado River snow and streamflow.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2024 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Lundquist, J. D.
Vano, J.
Gutmann, Ethan D.
Hogan, D.
Schwat, E.
Haugeneder, M.
Mateo, E.
Oncley, Steven
Roden, Christoph
Osenga, E.
Carver, L.
Publisher UCAR/NCAR - Library
Publication Date 2024-06-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-10T20:01:42.127961
Metadata Record Identifier edu.ucar.opensky::articles:27324
Metadata Language eng; USA
Suggested Citation Lundquist, J. D., Vano, J., Gutmann, Ethan D., Hogan, D., Schwat, E., Haugeneder, M., Mateo, E., Oncley, Steven, Roden, Christoph, Osenga, E., Carver, L.. (2024). Sublimation of snow. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d74j0kbd. Accessed 07 August 2025.

Harvest Source