Urban land expansion amplifies surface warming more in dry climate than in wet climate: A global sensitivity study

Urbanization changes Earth's climate by contributing to the buildup of atmospheric greenhouse gases and altering surface biophysical properties. In climate models, the greenhouse aspect is prescribed with urbanization and emission trajectories embedded in socioeconomic pathways (SSPs). However, the biophysical aspect is omitted because no models currently simulate spatially explicit urban land transition. Urban land is typically warmer than adjacent natural land due to a large urban‐versus‐natural land contrast in biophysical properties. The lack of biophysical representation of urbanization in climate models raises the possibility that model projection of future warming may be biased low, especially in areas with intense urban land expansion. Here, we conduct a global sensitivity study using a dynamic urban scheme in the Community Earth System Model to quantify the biophysical effect of urban land expansion under the SSP5‐RCP8.5 scenario. Constant urban radiative, thermal, and morphological properties are used. We find that the biophysical effect depends on land aridity. In climate zones where surface evaporation is water‐limited, the biophysical effect causes a significant increase in air temperature (0.28 ± 0.19 K; mean ± one standard deviation of nine ensemble pairs; p  < 0.01) in areas where urban expansion exceeds 5% by 2070. The majority of this warming signal is attributed to an indirect effect associated with atmospheric and land feedback, with the direct effect of land replacement playing a minor role. These atmospheric feedback processes, including solar brightening, soil drying, and stomatal closure, act to enhance the warming initiated by surface property changes of urban land replacement.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Dataset #1 : Urban Land Expansion Amplifies Surface Warming More in Dry Climate than in Wet Climate: A Global Sensitivity Study

Related Service #1 : Cheyenne: SGI ICE XA Cluster

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Zhang, K.
Fang, B.
Oleson, Keith W.
Zhao, L.
He, C.
Huang, Q.
Liu, Z.
Cao, C.
Lee, X.
Publisher UCAR/NCAR - Library
Publication Date 2025-02-28T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-10T19:54:13.251284
Metadata Record Identifier edu.ucar.opensky::articles:43161
Metadata Language eng; USA
Suggested Citation Zhang, K., Fang, B., Oleson, Keith W., Zhao, L., He, C., Huang, Q., Liu, Z., Cao, C., Lee, X.. (2025). Urban land expansion amplifies surface warming more in dry climate than in wet climate: A global sensitivity study. UCAR/NCAR - Library. https://n2t.net/ark:/85065/d75x2fbm. Accessed 08 August 2025.

Harvest Source