An assessment of how domain experts evaluate Machine Learning in operational meteorology

As an increasing number of machine learning (ML) products enter the research-to-operations (R2O) pipeline, researchers have anecdotally noted a perceived hesitancy by operational forecasters to adopt this relatively new technology. One explanation often cited in the literature is that this perceived hesitancy derives from the complex and opaque nature of ML methods. Because modern ML models are trained to solve tasks by optimizing a potentially complex combination of mathematical weights, thresholds, and nonlinear cost functions, it can be difficult to determine how these models reach a solution from their given input. However, it remains unclear to what degree a model’s transparency may influence a forecaster’s decision to use that model or if that impact differs between ML and more traditional (i.e., non-ML) methods. To address this question, a survey was offered to forecaster and researcher participants attending the 2021 NOAA Hazardous Weather Testbed (HWT) Spring Forecasting Experiment (SFE) with questions about how participants subjectively perceive and compare machine learning products to more traditionally derived products. Results from this study revealed few differences in how participants evaluated machine learning products compared to other types of guidance. However, comparing the responses between operational forecasters, researchers, and academics exposed notable differences in what factors the three groups considered to be most important for determining the operational success of a new forecast product. These results support the need for increased collaboration between the operational and research communities.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2025 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Harrison, D.
McGovern, A.
Karstens, C. D.
Bostrom, A.
Demuth, Julie L.
Jirak, I. L.
Marsh, P. T.
Publisher UCAR/NCAR - Library
Publication Date 2025-03-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-10T19:54:04.954489
Metadata Record Identifier edu.ucar.opensky::articles:43262
Metadata Language eng; USA
Suggested Citation Harrison, D., McGovern, A., Karstens, C. D., Bostrom, A., Demuth, Julie L., Jirak, I. L., Marsh, P. T.. (2025). An assessment of how domain experts evaluate Machine Learning in operational meteorology. UCAR/NCAR - Library. https://n2t.net/ark:/85065/d76q22nb. Accessed 05 August 2025.

Harvest Source