Aviation applications for satellite-based observations of cloud properties, convection initiation, in-flight icing, turbulence and volcanic ash

Advanced Satellite Aviation Weather Products (ASAP) was jointly initiated by the NASA Applied Sciences Program and the NASA Aviation Safety and Security Program in 2002. The initiative provides a valuable bridge for transitioning new and existing satellite information and products into Federal Aviation Administration (FAA) Aviation Weather Research Program (AWRP) efforts to increase the safety and efficiency of the airspace system. The ASAP project addresses hazards such as convective weather, turbulence (clear air and cloud induced), icing, and volcanic ash, and is particularly applicable in extending the monitoring of weather over data-sparse areas, such as the oceans and other observationally remote locations. ASAP research is conducted by scientists from NASA, the FAA AWRP's Product Development Teams (PDT), NOAA, and the academic research community. In this paper we provide a summary of activities since the inception of ASAP that emphasize the use of current-generation satellite technologies toward observing and mitigating specified aviation hazards. A brief overview of future ASAP goals is also provided in light of the next generation of satellite sensors (e.g., hyperspectral; high spatial resolution) to become operational in the 2007-18 time frame.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2007 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Mecikalski, J.
Feltz, W.
Murray, J.
Johnson, David B.
Bedka, K.
Bedka, S.
Wimmers, A.
Pavolonis, M.
Berendes, T.
Haggerty, Julie A.
Minis, P.
Bernstein, Ben C.
Williams, E.
Publisher UCAR/NCAR - Library
Publication Date 2007-10-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-17T16:01:28.611939
Metadata Record Identifier edu.ucar.opensky::articles:6707
Metadata Language eng; USA
Suggested Citation Mecikalski, J., Feltz, W., Murray, J., Johnson, David B., Bedka, K., Bedka, S., Wimmers, A., Pavolonis, M., Berendes, T., Haggerty, Julie A., Minis, P., Bernstein, Ben C., Williams, E.. (2007). Aviation applications for satellite-based observations of cloud properties, convection initiation, in-flight icing, turbulence and volcanic ash. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7sn0967. Accessed 04 August 2025.

Harvest Source