GPS meteorology: Direct estimation of the absolute value of precipitable water

A simple approach to estimating vertically integrated atmospheric water vapor, or precipitable water, from Global Positioning System (GPS) radio signals collected by a regional network of ground-based geodetic GPS receiver is illustrated and validated. Standard space geodetic methods are used to estimate the zenith delay caused by the neutral atmosphere, and surface pressure measurements are used to compute the hydrostatic (or "dry") component of this delay. The zenith hydrostatic delay is subtracted from the zenith neutral delay to determine the zenith wet delay, which is then transformed into an estimate of precipitable water. By incorporating a few remote global tracking stations (and thus long baselines) into the geodetic analysis of a regional GPS network, it is possible to resolve the absolute (not merely the relative) value of the zenith neutral delay at each station in the augmented network. This approach eliminates any need for external comparisons with water vapor radiometer observations and delivers a pure GPS solution for precipitable water. Since the neutral delay is decomposed into its hydrostatic and wet components after the geodetic inversion, the geodetic analysis is not complicated by the fact that some GPS stations are equipped with barometers and some are not. This approach is taken to reduce observations collected in the field experiment GPS/STORM and recover precipitable water with an rms error of 1.0 - 1.5 mm.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 1996 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Duan, J.
Bevis, M.
Fang, P.
Bock, Y.
Chiswell, S.
Businger, S.
Rocken, Christian
Solheim, Frederick
Van Hove, Teresa
Ware, Randolph H.
McClusky, S.
Herring, T.
King, R.
Publisher UCAR/NCAR - Library
Publication Date 1996-06-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-17T17:57:00.374756
Metadata Record Identifier edu.ucar.opensky::articles:17355
Metadata Language eng; USA
Suggested Citation Duan, J., Bevis, M., Fang, P., Bock, Y., Chiswell, S., Businger, S., Rocken, Christian, Solheim, Frederick, Van Hove, Teresa, Ware, Randolph H., McClusky, S., Herring, T., King, R.. (1996). GPS meteorology: Direct estimation of the absolute value of precipitable water. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7j967zx. Accessed 05 August 2025.

Harvest Source