Impact of Tibetan plateau surface heating on persistent extreme precipitation events in southeastern China

This paper combines observations, climatic analysis, and numerical modeling to investigate the Tibetan Plateau's (TP) surface heating conditions' influence on extreme persistent precipitation events (PEPEs) in southeastern China. Observations indicated an increase of TP surface air temperature 3-4 days prior to extreme persistent precipitation events in southeastern China. NCEP reanalysis data revealed a significant low pressure anomaly in southern China and a high pressure anomaly in northern China during extreme persistent precipitation event periods. Using correlation analysis and random resampling nonparametric statistics, a typical PEPE event from 17 to 25 June 2010 was selected for numerical simulation. The Weather Research and Forecasting (WRF) Model was used to investigate the impact of the TP's surface heating on the evolution of this event. Three contrasting WRF experiments were conducted with different surface heating strengths by changing initial soil moisture over the TP. Different soil conditions generate different intensities of surface sensible heat fluxes and boundary layer structures over the TP resulting in two main effects on downstream convective rainfall: modulating large-scale atmospheric circulations and modifying the water vapor transport at southern China. Increased surface heating in the TP strengthens a high pressure system over the Yangtze Plain, thereby blocking the northward movement of precipitation. It also enhances the water vapor transport from the South China Sea to southern China. The combined effects substantially increase precipitation over most of the southeastern China region.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2017 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Wan, B.
Gao, Z.
Chen, Fei
Lu, C.
Publisher UCAR/NCAR - Library
Publication Date 2017-09-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T19:46:30.027638
Metadata Record Identifier edu.ucar.opensky::articles:21076
Metadata Language eng; USA
Suggested Citation Wan, B., Gao, Z., Chen, Fei, Lu, C.. (2017). Impact of Tibetan plateau surface heating on persistent extreme precipitation events in southeastern China. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7xs5xxm. Accessed 31 July 2025.

Harvest Source