Present-day mass loss rates are a precursor for West Antarctic Ice Sheet collapse

Observations of recent mass loss rates of the West Antarctic Ice Sheet (WAIS) raise concerns about its stability since a collapse would increase global sea levels by several meters. Future projections of these mass loss trends are often estimated using numerical ice sheet models, and recent studies have highlighted the need for models to be benchmarked against present-day observed mass change rates. Here, we present an improved initialization method that optimizes local agreement not only with observations of ice thickness and surface velocity but also with satellite-based estimates of mass change rates. This is achieved by a combination of tuned thermal forcing under the floating ice shelves and friction under the ice sheet. Starting from this improved present-day state, we generate an ensemble of future simulations of Antarctic mass change by varying model physical choices and parameter values while fixing the climate forcing at present-day values. The dynamical response shows slow grounding-line retreat over several centuries, followed by a phase of rapid mass loss over about 200 years with a consistent rate of ∼3 mm GMSL yr−1 (global mean sea level). We find that, for all ensemble members, the Thwaites Glacier and Pine Island Glacier collapse. Our results imply that present-day ocean thermal forcing, if held constant over multiple centuries, may be sufficient to deglaciate large parts of the WAIS, raising global mean sea level by at least a meter.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Dataset #1 : Datasets used in van den Akker et al (2024) 'Present day mass loss rates are a precursor precursor for West Antarctic Ice Sheet Collapse

Related Service #1 : Cheyenne: SGI ICE XA Cluster

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author van den Akker, T.
Lipscomb, William
Leguy, Gunter
Bernales, J.
Berends, C. J.
van de Berg, W. J.
van de Wal, R. S. W.
Publisher UCAR/NCAR - Library
Publication Date 2025-01-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-10T19:55:32.815468
Metadata Record Identifier edu.ucar.opensky::articles:42689
Metadata Language eng; USA
Suggested Citation van den Akker, T., Lipscomb, William, Leguy, Gunter, Bernales, J., Berends, C. J., van de Berg, W. J., van de Wal, R. S. W.. (2025). Present-day mass loss rates are a precursor for West Antarctic Ice Sheet collapse. UCAR/NCAR - Library. https://n2t.net/ark:/85065/d71r6vw9. Accessed 03 August 2025.

Harvest Source