Validation of simulated statistical characteristics of magnetosphere-ionosphere coupling in global geospace simulations over an entire Carrington rotation

We study the statistical features of magnetosphere-ionosphere (M-I) coupling using a two-way M-I model, the GT configuration of the Multiscale Atmosphere Geospace Environment (MAGE) model. The M-I coupling characteristics, such as field-aligned current, polar cap potential, ionospheric Joule heating, and downward Alfv eacute;nic Poynting flux, are binned according to the interplanetary magnetic field clock angles over an entire Carrington Rotation event between 20 March and 16 April 2008. The MAGE model simulates similar distributions of field-aligned currents compared to empirical Weimer/AMPS models and Iridium observations and reproduces the Region 0 current system. The simulated convection potential agrees well with the Weimer empirical model and displays consistent two-cell patterns with SuperDARN observations, which benefit from more extensive data sets. The Joule heating structure in MAGE is generally consistent with both empirical Cosgrove and Weimer models. Moreover, our model reproduces Joule heating enhancements in the cusp region, as presented in the Cosgrove model and observations. The distribution of the simulated Alfv eacute;nic Poynting flux is consistent with that observed by the FAST satellite in the dispersive Alfv eacute;n wave regime. These M-I coupling characteristics are also binned by the Kp indices, indicating that the Kp dependence of these patterns in the M-I model is more effective than the empirical models within the Carrington Rotation. Furthermore, the MAGE simulation exhibits an improved M-I current-voltage relation that closely resembles the Weimer model, suggesting that the updated global model is significantly improved in terms of M-I coupling.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Yin, Q.
Pham, K. H.
Chen, J.
Zhang, B.
Publisher UCAR/NCAR - Library
Publication Date 2024-06-14T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-10T20:01:15.058829
Metadata Record Identifier edu.ucar.opensky::articles:27300
Metadata Language eng; USA
Suggested Citation Yin, Q., Pham, K. H., Chen, J., Zhang, B.. (2024). Validation of simulated statistical characteristics of magnetosphere-ionosphere coupling in global geospace simulations over an entire Carrington rotation. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7125xvd. Accessed 01 August 2025.

Harvest Source