Wildfire fuels mapping through artificial intelligence-based methods: A review

Understanding fire behavior is a crucial step in wildfire risk assessment and management. Accurate and near real-time knowledge of the spatio-temporal characteristics of fuels is critical for analyzing pre-fire risk mitigation and managing active-fire emergency response. Geospatial modeling and land cover mapping using remote sensing combined with artificial intelligence techniques can provide fuel information at regional scales with high accuracy and resolution, as evidenced by the extensive recent work in the literature that appeared with increasing volume in the open literature. This paper provides a comprehensive survey of the state-of-the-art in wildfire fuel mapping, focusing on the research frontier of fire fuel models, fuel mapping methods, remote sensing data sources, existing datasets/reference maps, and applicable artificial intelligence techniques. The main findings highlight the increasing research on fire fuel mapping worldwide, with a considerable emphasis on multispectral imagery and the Random Forest classifier for its efficacy with limited data. The majority of these studies concentrate on relatively limited geographical scales spanning a small variety of fuel types, thus leaving a gap in regional and national-scale mapping. Further, this review focuses on identifying the major challenges in wildfire fuel mapping and viable solutions as they relate to (i) ground truth data scarcity, (ii) mapping understory vegetation, (iii) temporal latency, and (iv) lack of uncertainty-aware models. Lastly, this paper identifies potential AI-driven solutions that promise a significant leap in fuel mapping and discusses the latest developments and potential future trends in AI-based fuel mapping applications.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Shaik, R. U.
Alipour, M.
Shamsaei, K.
Rowell, E.
Balaji, B.
Watts, A.
Kosović, Branko
Ebrahimian, H.
Taciroglu, E.
Publisher UCAR/NCAR - Library
Publication Date 2025-03-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-10T19:53:50.827524
Metadata Record Identifier edu.ucar.opensky::articles:43275
Metadata Language eng; USA
Suggested Citation Shaik, R. U., Alipour, M., Shamsaei, K., Rowell, E., Balaji, B., Watts, A., Kosović, Branko, Ebrahimian, H., Taciroglu, E.. (2025). Wildfire fuels mapping through artificial intelligence-based methods: A review. UCAR/NCAR - Library. https://n2t.net/ark:/85065/d7j107kz. Accessed 01 August 2025.

Harvest Source