An improvement in forecasting rapid intensification of Typhoon Sinlaku (2008) using clear sky full spatial resolution advanced IR soundings

Hyperspectral infrared (IR) sounders, such as the Atmospheric Infrared Sounder (AIRS) and the Infrared Atmospheric Sounding Interferometer (IASI), provide unprecedented global atmospheric temperature and moisture soundings with high vertical resolution and accuracy. In this paper, the authors investigate whether advanced IR soundings of water vapor and temperature observations can improve the analysis of a tropical cyclone vortex and the forecast of rapid intensification of a tropical cyclone. Both the IR water vapor and temperature soundings significantly improve the typhoon vortex in the analysis and the forecast of the rapid intensification of Typhoon Sinlaku (2008). The typhoon track forecast is also substantially improved when the full spatial resolution AIRS soundings are assimilated. This study demonstrates the potential important application of high spatial and hyperspectral IR soundings in forecasting tropical cyclones.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2010 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Liu, Hui
Li, Jun
Publisher UCAR/NCAR - Library
Publication Date 2010-04-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:58:31.216901
Metadata Record Identifier edu.ucar.opensky::articles:17072
Metadata Language eng; USA
Suggested Citation Liu, Hui, Li, Jun. (2010). An improvement in forecasting rapid intensification of Typhoon Sinlaku (2008) using clear sky full spatial resolution advanced IR soundings. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7mw2jdf. Accessed 23 June 2025.

Harvest Source