Chemical data assimilation with aqueous chemistry in WRF-Chem coupled with WRFDA (V4.4.1)

This study introduces a new chemistry option in the Weather Research and Forecasting model data assimilation (WRFDA) system, coupled with the WRF-Chem model (Version 4.4.1), to incorporate aqueous chemistry (AQCHEM) in the assimilation of ground-level chemical measurements. The new DA capability includes the integration of aqueous-phase aerosols from the Regional Atmospheric Chemistry Mechanism (RACM) gas chemistry, the Modal Aerosol Dynamics Model for Europe (MADE) aerosol chemistry, and the Volatility Basis Set (VBS) for secondary organic aerosol production. The RACM-MADE-VBS-AQCHEM scheme facilitates aerosol-cloud-precipitation interactions by activating aerosol particles in cloud water during the model simulation. With the goal of enhancing air quality forecasting in cloudy conditions, this new implementation is demonstrated in the weakly coupled three-dimensional variational data assimilation (3D-Var) system through regional air quality cycling over East Asia. Surface particulate matter (PM) concentrations and four gas species (SO2, NO2, O3, and CO) are assimilated every 6 hr for the month of March 2019. The results show that including aqueous-phase aerosols in both the analysis and forecast can represent aerosol wet removal processes associated with cloud development and rainfall production. During a pollution event with high cloud cover, simulations without aerosols defined in cloud water exhibit significantly higher values for liquid water path, and surface PM10 (PM2.5) concentrations are overestimated by a factor of 10 (3) when wet scavenging processes dominate. On the contrary, AQCHEM proves to be helpful in simulating the wet deposition of aerosols, accurately predicting the evolution of surface PM concentrations without such overestimation.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Dataset #1 : MYD06_L2 MYD06_L2 MODIS/Aqua Clouds 5-Min L2 Swath 1km and 5km

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Ha, So-Young
Kumar, Rajesh
Pfister, Gabriele
Lee, Y.
Lee, D.
Kim, H. M.
Ryu, Y.
Publisher UCAR/NCAR - Library
Publication Date 2024-02-24T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-10T20:04:05.401479
Metadata Record Identifier edu.ucar.opensky::articles:27040
Metadata Language eng; USA
Suggested Citation Ha, So-Young, Kumar, Rajesh, Pfister, Gabriele, Lee, Y., Lee, D., Kim, H. M., Ryu, Y.. (2024). Chemical data assimilation with aqueous chemistry in WRF-Chem coupled with WRFDA (V4.4.1). UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7bg2t50. Accessed 31 July 2025.

Harvest Source