Energy-conserving physics for nonhydrostatic dynamics in mass coordinate models

Motivated by reducing errors in the energy budget related to enthalpy fluxes within the Energy Exascale Earth System Model (E3SM), we study several physics-dynamics coupling approaches. Using idealized physics, a moist rising bubble test case, and the E3SM's nonhydrostatic dynamical core, we consider unapproximated and approximated thermodynamics applied at constant pressure or constant volume. With the standard dynamics and physics time-split implementation, we describe how the constant-pressure and constant-volume approaches use different mechanisms to transform physics tendencies into dynamical motion and show that only the constant-volume approach is consistent with the underlying equations. Using time step convergence studies, we show that the two approaches both converge but to slightly different solutions. We reproduce the large inconsistencies between the energy flux internal to the model and the energy flux of precipitation when using approximate thermodynamics, which can only be removed by considering variable latent heats, both when computing the latent heating from phase change and when applying this heating to update the temperature. Finally, we show that in the nonhydrostatic case, for physics applied at constant pressure, the general relation that enthalpy is locally conserved no longer holds. In this case, the conserved quantity is enthalpy plus an additional term proportional to the difference between hydrostatic pressure and full pressure.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Software #1 : oksanaguba/E3SM: support-materials5

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Guba, O.
Taylor, M. A.
Bosler, P. A.
Eldred, C.
Lauritzen, Peter H.
Publisher UCAR/NCAR - Library
Publication Date 2024-02-16T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-10T20:04:13.751599
Metadata Record Identifier edu.ucar.opensky::articles:27154
Metadata Language eng; USA
Suggested Citation Guba, O., Taylor, M. A., Bosler, P. A., Eldred, C., Lauritzen, Peter H.. (2024). Energy-conserving physics for nonhydrostatic dynamics in mass coordinate models. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7kk9h1b. Accessed 01 August 2025.

Harvest Source