High-resolution large-eddy simulations of flow in the complex terrain of the Canadian Rockies

Improving the calculation of land-atmosphere fluxes of heat and water vapor in mountain terrain requires better resolution of thermally driven diurnal winds (i.e., valley, slope winds) due to differential heating by terrain and radiative fluxes. In this study, the Weather Research and Forecasting model is used to simulate flow in large-eddy simulation (LES) mode over the complex terrain of the Fortress Mountain and Marmot Creek research basins, Kananaskis Valley, Canadian Rockies, Alberta in mid-summer. The model was used to examine the temporal and spatial evolution of local winds and near-surface boundary layer processes with variability in topography and elevation. Numerically resolving complex terrain wind flow effects require smaller grid cell size. However, the use of terrain-following coordinates in most numerical weather prediction models results in large numerical errors when flow over steep terrain is simulated. These errors propagate through the domain and can result in numerical instability. To avoid this issue when simulating flow over steep terrain a local smoothing approach was used, where smoothing is applied only where slope exceeds some predetermined threshold. LES results from local smoothing were compared with a mesoscale model and LES with global smoothing. Simulations are evaluated using sounding data and meteorological stations. The differences in flow patterns and reversals in two mountain basins suggest that valley geometry and volume is relevant to the break up of inversion layers, removal of cold-air pools, and strength of thermally driven winds.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Service #1 : Cheyenne: SGI ICE XA Cluster

Related Software #1 : High Resolution Large-Eddy Simulations of Flow in the Complex Terrain of the Canadian Rockies

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Rohanizadegan, M.
Petrone, R. M.
Pomeroy, J. W.
Kosović, Branko
Muñoz-Esparza, Domingo
Helgason, W. D.
Publisher UCAR/NCAR - Library
Publication Date 2023-10-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T15:14:10.865206
Metadata Record Identifier edu.ucar.opensky::articles:26726
Metadata Language eng; USA
Suggested Citation Rohanizadegan, M., Petrone, R. M., Pomeroy, J. W., Kosović, Branko, Muñoz-Esparza, Domingo, Helgason, W. D.. (2023). High-resolution large-eddy simulations of flow in the complex terrain of the Canadian Rockies. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7r215gc. Accessed 01 August 2025.

Harvest Source