Kilometer-scale multi-physics simulations of heavy precipitation events in Northeast China

Despite the fatal impact of heavy precipitation on people's lives and the social economy, its accurate estimating remains challenging. In this study, we show how to address this issue by kilometer-scale simulations and how to reduce computational costs in Northeast China with the complex terrain and distribution of land and sea. Three typical heavy precipitation events are simulated at 3 km horizontal resolution, and each event is simulated with 24 combinations of schemes (with or without a scale-aware cumulus scheme, three microphysics schemes, and four planetary boundary layer schemes), which are evaluated against gauge observations. Compared to gauge observations, the ensemble mean of simulations of hourly maximum precipitation and average accumulated precipitation outperforms three widely accepted satellite products in the cold vortex and the snowstorm case, and is of comparable accuracy in the typhoon case. Overall, the microphysics scheme significantly impacts the maximum hourly precipitation, whereas the planetary boundary layer scheme has a strong control over the accumulated precipitation. The similarity among different simulations is linked to the level of convective instability's impact on heavy precipitation in each case, which also indicates that conducting 24 simulations can be not necessary. This study uses an ensemble performance estimation technique assuming the impact of different schemes is additive and finds that performing 13 rather than 24 simulations allows finding the best-performing combination of parameterization schemes, which allows for saving almost 50% of computational costs.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Yu, H.
Prein, Andreas
Qi, D.
Wang, K.
Publisher UCAR/NCAR - Library
Publication Date 2024-09-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-10T19:59:13.477632
Metadata Record Identifier edu.ucar.opensky::articles:42306
Metadata Language eng; USA
Suggested Citation Yu, H., Prein, Andreas, Qi, D., Wang, K.. (2024). Kilometer-scale multi-physics simulations of heavy precipitation events in Northeast China. UCAR/NCAR - Library. https://n2t.net/ark:/85065/d7xs60pp. Accessed 01 August 2025.

Harvest Source