Modeling rainfall interception loss for an epiphyte-laden Quercus virginiana forest using reformulated static and variable storage Gash analytical models

Barrier island forests are sensitive to changing precipitation characteristics as they typically rely on a precipitation-fed freshwater lens. Understanding and predicting significant rainfall losses is, therefore, critical to the prediction and management of hydrometeorological processes in the barrier island forest ecosystem. This study measures and models one such loss, canopy rainfall interception, for a barrier island forest common across subtropical and tropical coastlines: epiphyte-laden Quercus virginiana on St. Catherine’s Island (Georgia, United States). Reformulated Gash analytical models (RGAMs) relying on static- and variable-canopy-storage formulations were parameterized using common maximum water storage (minimum, mean, maximum, and laboratory submersion) and evaporation (Penman-Monteith, saturated rain-throughfall regression, and rain-interception regression) estimation methods. Cumulative interception loss was 37% of rainfall, and the epiphyte community contribution to interception loss was 11%. Variable-storage RGAMs using inferred evaporation and maximum water storage estimates performed best: mean absolute error of 1-2 mm, normalized mean percent error of 15%-25%, and model efficiency of 0.88-0.97, resulting in a 2%-5% overestimate of cumulative interception. Static- and variable-storage RGAMs using physically derived evaporation (Penman-Monteith) underestimated observed interception loss (40%-60%), yet the error was significantly lowered for submersion estimates of maximum water storage. Greater apparent error when using Penman-Monteith rates may result from unknown drying times, evaporation sources, and/or in situ epiphyte storage dynamics. As such, it is suggested that future research apply existing technologies to quantify evaporative processes during rainfall (e.g., eddy covariance) and to develop new methods to directly monitor in situ epiphyte water storage.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2016 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Van Stan, John
Gutmann, Ethan
Lewis, Elliott
Gay, Trent
Publisher UCAR/NCAR - Library
Publication Date 2016-07-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:00:12.917829
Metadata Record Identifier edu.ucar.opensky::articles:18664
Metadata Language eng; USA
Suggested Citation Van Stan, John, Gutmann, Ethan, Lewis, Elliott, Gay, Trent. (2016). Modeling rainfall interception loss for an epiphyte-laden Quercus virginiana forest using reformulated static and variable storage Gash analytical models. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7028t6g. Accessed 21 June 2025.

Harvest Source