Multiscale weather forecasting sensitivities to urban characteristics and atmospheric conditions during a cold front passage over the Dallas-Fort Worth metroplex

Sensitivities of microscale weather modeling to atmospheric conditions and urban layout are investigated utilizing a combination of automated surface observing systems (ASOS) data, 1-km mesoscale numerical weather prediction (NWP), and 5-m nested large-eddy simulation (LES) modeled conditions. The 1-km mesoscale predictions in analysis mode satisfactorily reproduce the observed spatiotemporal evolution of the frontal boundary in terms of wind speed, wind direction, and temperature. The 5-m nested LES simulations follow the large-scale forcing trends while improving wind speed predictions due to explicitly resolving turbulence and building interactions. Moreover, 5-min averaged nested LES results reveal improved temporal variability particularly during the stronger wind and turbulence post-frontal conditions. The skill of the 1-km mesoscale NWP model prediction is compared to coarse-grained LES fields. Probability distributions extracted from the 5-m nested LES predictions exhibit the largest sensitivity to the contrasting meteorological conditions. In contrast, cumulative distributions of TKE additionally expose a marked dependency on the unique distribution of building heights, urban density and clustering in a given area. For the first time, an ensemble forecast methodological design at building-resolving grid spacing is explored. A larger microscale ensemble spread is found for TKE than for wind speed, decreasing with height and modulated by weather conditions.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Service #1 : Derecho: HPE Cray EX Cluster

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Muñoz-Esparza, Domingo
Sauer, Jeremy
Jiménez Munoz, Pedro A.
Boehnert, Jennifer M R
Hahn, David T.
Steiner, Matthias
Publisher UCAR/NCAR - Library
Publication Date 2025-03-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-10T19:54:01.386489
Metadata Record Identifier edu.ucar.opensky::articles:43003
Metadata Language eng; USA
Suggested Citation Muñoz-Esparza, Domingo, Sauer, Jeremy, Jiménez Munoz, Pedro A., Boehnert, Jennifer M R, Hahn, David T., Steiner, Matthias. (2025). Multiscale weather forecasting sensitivities to urban characteristics and atmospheric conditions during a cold front passage over the Dallas-Fort Worth metroplex. UCAR/NCAR - Library. https://n2t.net/ark:/85065/d72r3x2j. Accessed 03 August 2025.

Harvest Source