Nonstationary covariance modeling for incomplete data: Monte Carlo EM approach

A multi-resolution basis can provide a useful representation of nonstationary two-dimensional spatial processes that are typically encountered in the geosciences. The main advantages are its flexibility for representing departures from stationarity and importantly the scalability of algorithms to large numbers of spatial locations. The key ingredients of our approach are the availability of fast transforms for wavelet bases on regular grids and enforced sparsity in the covariance matrix among wavelet basis coefficients. In support of this approach we outline a theoretical proposition for decay properties of the multi-resolution covariance for mixtures of Matérn covariances. A covariance estimator, built upon a regularized method of moment, is straightforward to compute for complete data on regular grids. For irregular spatial data the estimator is implemented by using a conditional simulation algorithm drawn from a Monte Carlo Expectation Maximization approach, to translate the problem to a regular grid in order to take advantage of efficient wavelet transforms. This method is illustrated with a Monte Carlo experiment and applied to surface ozone data from an environmental monitoring network. The computational efficiency makes it possible to provide bootstrap measures of uncertainty and these provide objective evidence of the nonstationarity of the surface ozone field.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

NOTICE: This is the author's version of a work submitted for publication by Elsevier. Changes resulting from the publishing process, including peer review, editing, corrections, structural formatting and other quality control mechanisms, may not be reflected in this document. Changes may have been made to this work since it was submitted for publication.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Matsuo, Tomoko
Nychka, Douglas
Paul, D.
Publisher UCAR/NCAR - Library
Publication Date 2011-06-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-17T14:47:30.971958
Metadata Record Identifier edu.ucar.opensky::articles:18147
Metadata Language eng; USA
Suggested Citation Matsuo, Tomoko, Nychka, Douglas, Paul, D.. (2011). Nonstationary covariance modeling for incomplete data: Monte Carlo EM approach. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7h133k4. Accessed 01 August 2025.

Harvest Source