Precipitation sensitivity to surface heat fluxes over North America in reanalysis and model data

A new methodology for assessing the impact of surface heat fluxes on precipitation is applied to data from the North American Regional Reanalysis (NARR) and to output from the Geophysical Fluid Dynamics Laboratory’s Atmospheric Model 2.1 (AM2.1). The method assesses the sensitivity of afternoon convective rainfall frequency and intensity to the late-morning partitioning of latent and sensible heating, quantified in terms of evaporative fraction (EF). Over North America, both NARR and AM2.1 indicate sensitivity of convective rainfall triggering to EF but no appreciable influence of EF on convective rainfall amounts. Functional relationships between the triggering feedback strength (TFS) metric and mean EF demonstrate the occurrence of stronger coupling for mean EF in the range of 0.6 to 0.8. To leading order, AM2.1 exhibits spatial distributions and seasonality of the EF impact on triggering resembling those seen in NARR: rainfall probability increases with higher EF over the eastern United States and Mexico and peaks in Northern Hemisphere summer. Over those regions, the impact of EF variability on afternoon rainfall triggering in summer can explain up to 50% of seasonal rainfall variability. However, the AM2.1 metrics also exhibit some features not present in NARR, for example, strong coupling extending northwestward from the central Great Plains into Canada. Sources of disagreement may include model hydroclimatic biases that affect the mean patterns and variability of surface flux partitioning, with EF variability typically much lower in NARR. Finally, the authors also discuss the consistency of their results with other assessments of land-precipitation coupling obtained from different methodologies.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2013 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Berg, Alexis
Findell, Kirsten
Lintner, Benjamin
Gentine, Pierre
Kerr, Christopher
Publisher UCAR/NCAR - Library
Publication Date 2013-06-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:09:12.077608
Metadata Record Identifier edu.ucar.opensky::articles:12693
Metadata Language eng; USA
Suggested Citation Berg, Alexis, Findell, Kirsten, Lintner, Benjamin, Gentine, Pierre, Kerr, Christopher. (2013). Precipitation sensitivity to surface heat fluxes over North America in reanalysis and model data. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7c82b40. Accessed 22 June 2025.

Harvest Source